The scientific mission of ESTCube-1, launched in May 2013, is to measure the electric solar wind sail (E-sail) force in orbit. The experiment is planned to push forward the development of the E-sail, a propulsion method recently invented at the Finnish Meteorological Institute. The E-sail is based on extracting momentum from the solar wind plasma flow by using long thin electrically charged tethers. ESTCube-1 is equipped with one such tether, together with hardware capable of deploying and charging it. At the orbital altitude of ESTCube-1 (660–680 km) there is no solar wind present. Instead, ESTCube-1 shall observe the interaction between the charged tether and the ionospheric plasma. The ESTCube-1 payload uses a 10-m, partly two-filament E-sail tether and a motorized reel on which it is stored. The tether shall be deployed from a spinning satellite with the help of centrifugal force. An additional mass is added at the tip of the tether to assist with the deployment. During the E-sail experiment the tether shall be charged to 500 V potential. Both positive and negative voltages shall be experimented with. The voltage is provided by a dedicated high-voltage source and delivered to the tether through a slip ring contact. When the negative voltage is applied to the tether, the satellite body is expected to attract the electron flow capable of compensating for the ion flow, which runs to the tether from the surrounding plasma. With the positive voltage applied, onboard cold cathode electron guns are used to remove excess electrons to maintain the positive voltage of the tether. In this paper we present the design and structure of the tether payload of ESTCube-1.
1. Janhunen, P. and Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys., 2007, 25, 755–767.
http://dx.doi.org/10.5194/angeo-25-755-2007
2. Janhunen, P., Toivanen, P., Envall, J., Merikallio, S., Montesanti, G., Gonzalez del Amo, J. et al. Overview of electric solar wind sail applications. Proc. Estonian Acad. Sci., 2014, 63(2S), 267–278.
3. Janhunen, P. The electric sail – a new propulsion method which may enable fast missions to the outer solar system. J. British Interpl. Soc., 2008, 61, 322–325.
4. Mengali, G. and Quarta, A. A. Non-Keplerian orbits for electric sails. Cel. Mech. Dyn. Astron., 2009, 105, 179–195.
http://dx.doi.org/10.1007/s10569-009-9200-y
5. Janhunen, P. On the feasibility of a negative polarity electric sail. Ann. Geophys., 2009, 27, 1439–1447.
http://dx.doi.org/10.5194/angeo-27-1439-2009
6. Toivanen, P. K. and Janhunen, P. Electric sailing under observed solar wind conditions. Astrophys. Space Sci. Trans., 2009, 5, 61–69.
http://dx.doi.org/10.5194/astra-5-61-2009
7. Quarta, A. A. and Mengali, G. Electric sail missions to potentially hazardous asteroids. Acta Astronaut., 2010, 66, 1506–1519.
http://dx.doi.org/10.1016/j.actaastro.2009.11.021
8. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E. et al. Electric solar wind sail: towards test missions. Rev. Sci. Instrum., 2010, 81, 111301–111301–11.
http://dx.doi.org/10.1063/1.3514548
9. Merikallio, S. and Janhunen, P. Moving an asteroid with electric solar wind sail. Astrophys. Space Sci. Trans., 2010, 6, 41–48.
http://dx.doi.org/10.5194/astra-6-41-2010
10. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voormansik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstration. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.
11. Seppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., and Haeggström, E. Wire-to-wire bonding of μm-diameter aluminum wires for the Electric Solar Wind Sail. Microelectron. Eng., 2011, 88, 3267–3269.
http://dx.doi.org/10.1016/j.mee.2011.07.002
12. Seppänen, H., Rauhala, T., Kiprich, S., Ukkonen, J., Simonsson, M., Kurppa, R. et al. One kilometer (1 km) electric solar wind sail tether produced automatically. Rev. Sci. Instrum., 2013, 84, 095102.
http://dx.doi.org/10.1063/1.4819795
13. Edelbauer, M. and Porn, M. Tecasint Handbook. Ensinger GmbH (available online at http://ensinger-inc.com/downloads/lit_brochures/TECASINT-handbook.pdf).
14. Obraztsov, A. N. and Kleshch, V. I. Cold and laser stimulated electron emission from nanocarbons. J. Nanoelectron. Optoelectron., 2009, 4(2), 207–219.
http://dx.doi.org/10.1166/jno.2009.1023
15. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.
16. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218–226.
http://dx.doi.org/10.1016/j.actaastro.2013.11.014