Wireless power transfer is considered as a novel solution for energy harvesting in wireless communication networks. In this paper, the system performance of the non-linear energy harvesting based power splitting relaying in the full-duplex relaying sensor network is investigated. We considered the system model network with one source, one destination, and one relay node in both the amplify-and-forward and decode-and-forward modes. The closed-form expressions of the system outage (OP) are analysed and derived for verifying system performance. Then, the correctness of the OP closed-form expression is verified by using the Monte Carlo simulation. Furthermore, the influence of the primary system parameters on the system OP is suggested and investigated. The research results indicated that the simulation curves and the analytical curves overlapped, verifying the correctness of the analytical expressions.
1. Bi, S., Ho, C. K., and Zhang, R. Wireless powered communication: oportunities and challenges. IEEE Commun. Mag., 2015, 53(4), 117–125.
https://doi.org/10.1109/MCOM.2015.7081084
2. Niyato, D., Kim, D. I., Maso, M., and Han, Z. Wireless powered communication networks: research directions and technological approaches. IEEE Wireless Commun., 2017, 24(6), 2–11.
https://doi.org/10.1109/MWC.2017.1600116
3. Yu, H., Lee, H., and Jeon, H. What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 2017, 9(10), 1848.
https://doi.org/10.3390/su9101848
4. Salem, A., Hamdi, K. A., and Rabie, K. M. Physical layer security with RF energy harvesting in AF multi-antenna relaying networks. IEEE Trans. on Commun., 2016, 64(7), 3025–3038.
https://doi.org/10.1109/TCOMM.2016.2573829
5. Liu, W., Zhou, X., Durrani, S., and Popovski, P. Secure communication with a wireless-powered friendly jammer. IEEE Trans. Wireless Commun., 2016, 15(1), 401–415.
https://doi.org/10.1109/TWC.2015.2474378
6. Nguyen, B. C., Hoang, T. M., Tran, P. T., and Nguyen,T. N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay. AEU-Int. J. Electron. Commun., 2020, 116, March 2020, 152957.
https://doi.org/10.1016/j.aeue.2019.152957
7. Zhou, X., Zhang, R., and Ho, C. K. Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun., 2013, 61(11), 4754–4767.
https://doi.org/10.1109/TCOMM.2013.13.120855
8. Liu, L., Zhang, R., and Chua, K-C. Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wireless Commun., 2013, 12(1), 288–300.
https://doi.org/10.1109/TWC.2012.113012.120500
9. Nguyen, T. N., Tran, M., Ha, D-H., Trang, T. T., and Voznak, M. Multi-source in DF cooperative networks with the PSR protocol based full-duplex energy harvesting over a Rayleigh fading channel: performance analysis. Proc. Estonian Acad. Sci., 2019, 68, 264–275.
https://doi.org/10.3176/proc.2019.3.03
10. Medepally, B. and Mehta, N. B. Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wireless Commun., 2010, 9(11), 3543–3553.
https://doi.org/10.1109/TWC.2010.091510.100447
11. Zhang, R. and Ho, C. K. MIMO broadcasting for simultaneous wireless information and power transfer. In 2011 IEEE Global Telecommunications Conference – GLOBECOM 2011, 2011. arXiv:1105.4999v3.
12. Son, H. and Clerckx, B. Joint beamforming design for multi-user wireless information and power transfer. IEEE Trans. Wireless Commun., 2014, 13(11), 6397–6409.
https://doi.org/10.1109/TWC.2014.2349511
13. Xu, J., Liu, L., and Zhang, R. Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Signal Processing, 2014, 62(18), 4798–4810.
https://doi.org/10.1109/TSP.2014.2340817
14. Park, J. and Clerckx, B. Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Trans. Wireless Commun., 2013, 12(8), 4210–4221.
https://doi.org/10.1109/TWC.2013.071913.130084
15. Huang, K. and Larsson, E. Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Processing, 2013, 61(23), 5972–5986.
https://doi.org/10.1109/TSP.2013.2281026
16. Zhou, X., Zhang, R., and Ho, C. K. Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wireless Commun., 2014, 13(4), 2282–2294.
https://doi.org/10.1109/TWC.2014.030514.131479
17. Nasir, A. A., Zhou, X., Durrani, S., and Kennedy, R. A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun., 2013, 12(7), 3622–3636.
https://doi.org/10.1109/TWC.2013.062413.122042
18. Huang, Y. and Clerckx, B. Joint wireless information and power transfer for an autonomous multiple antenna relay system. IEEE Commun. Lett., 2015, 19(7), 1113–1116.
https://doi.org/10.1109/LCOMM.2015.2428252
19. Huang, Y. and Clerckx, B. Relaying strategies for wireless-powered MIMO relay networks. IEEE Trans. Wireless Commun., 2016, 15(9), 6033–6047.
https://doi.org/10.1109/TWC.2016.2577581
20. Ju, H. and Zhang, R. Throughput maximization in wireless powered communication networks. IEEE Trans. Wireless Commun., 2014, 13(1), 418–428.
https://doi.org/10.1109/TWC.2013.112513.130760
21. Lee, H., Lee, K-J., Kim, H., Clerckx, B., and Lee, I. Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Trans. Wireless Commun., 2016, 15(4), 2619–2628.
https://doi.org/10.1109/TWC.2015.2506561
22. Huang, K., Zhong C., and Zhu, G. Some new research trends in wirelessly powered communications. IEEE Wireless Commun., 2016, 23(2), 19–27.
https://doi.org/10.1109/MWC.2016.7462481
23. Pflug, H. W., Keyrouz, S., and Visser, H. J. Far-field energy harvesting rectifier analysis. In 2016 IEEE Wireless Power Transfer Conference (WPTC2016)Aveiro, 2016.
https://doi.org/10.1109/WPT.2016.7498764
24. Nguyen, T. N., Tran, M. H., Nguyen, T-L., Ha, D-H., and Voznák, M. Performance analysis of a user selection protocol in cooperative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics, 2019, 8(4), 448.
https://doi.org/10.3390/electronics8040448
25. Halima, N. B. and Boujemaa, H. Exact and approximate symbol error probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels. KSII Trans. Internet Inf. Syst., 2018, 12(1), 81–108.
https://doi.org/10.3837/tiis.2018.01.005
26. Tseng, S.-M., Lee, T-L., Ho, Y-C., and Tseng, D-F. Distributed space-time block codes with embedded adaptive AAF/DAF elements and opportunistic listening for multihop power line communication networks. Int. J. Commun. Syst., 2017, 30(1), e2950.
https://doi.org/10.1002/dac.2950
27. Li, Y. and Vucetic, B. On the performance of a simple adaptive relaying protocol for wireless relay networks. In Proceedings of the VTC Spring 2008 –IEEE Vehicular Technology Conference, Singapore, 11–14 May 2008, 2400–2405.
https://doi.org/10.1109/VETECS.2008.531
28. Nguyen, T. N., Tran, P. T., and Voznak, M. Power splitting-based energy-harvesting protocol for wireless powered communication networks with a bidirectional relay. Int. J. Commun. Syst., 2018, 31(13).
https://doi.org/10.1002/dac.3721
29. Assimonis, S. D., Daskalakis, S., and Bletsas, A. Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks. IEEE Trans. Microw. Theory Techn., 2016, 64(4), 1327–1338.
https://doi.org/10.1109/TMTT.2016.2533619
30. Popovic, Z. Far-field low-power wireless powering for unattended sensors. In 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON). Cocoa Beach, Fl., 2015, 1–4.
https://doi.org/10.1109/WAMICON.2015.7120437
31. Nguyen, T. N., Minh, T. H. Q., Tran P. T., and Voznak, M. Adaptive energy harvesting relaying protocol for two-way half duplex system network over Rician fading channels. Wireless Commun. Mobile Comput., 2018, 1–10.
https://doi.org/10.1155/2018/7693016
32. Nguyen, T. N., Tin, P. T., Ha, D. H., Voznak, M., Tran, P. T., Tran, M., and Nguyen, T-L. Hybrid TSR–PSR alternate energy harvesting relay network over Rician fading channels: outage probability and SER analysis. Sensors, 2018,18(11), article No. 3839.
https://doi.org/10.3390/s18113839
33. Nguyen, T N., Minh, T. H. Q., Ha, D-H., Nguyen, T-L., and Voznak, M. Energy harvesting based two-way full-duplex relaying network over Rician fading environment: performance analysis. Proc. Estonian Acad. Sci., 2019, 68, 111–123.
https://doi.org/10.3176/proc.2019.1.11
34. Phan, V-D., Nguyen, T. N., Tran, M., Trang, T. T, Voznak, M., Ha, D-H., and Nguyen, T-L. Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: energy efficiency and outage probability analysis. Energies, 2019, 12(13), 2579.
https://doi.org/10.3390/en12132579
35. Nguyen, T. N., Minh, T. H. Q., Nguyen, T-L., Ha, D-H., and Voznak, M. Multi-source power splitting energy harvesting relaying network in half-duplex system over block Rayleigh fading channel: system performance analysis. Electronics, 2019, 8(1), article No. 67.
https://doi.org/10.3390/electronics8010067
36. Dong, Y., Hossain, M. J., and Cheng, J. Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester. IEEE Commun. Lett., 2016, 20(4), 672–675.
https://doi.org/10.1109/LCOMM.2016.2528260
37. Wang, K., Li, Y., Ye, Y., and Zhang, H. Dynamic power splitting schemes for non-linear EH relaying networks: perfect and imperfect CSI. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Toronto, ON, 2017, 1–5.
https://doi.org/10.1109/VTCFall.2017.8287945
38. Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series, and Products, 8th ed. (Zwillinger, D. ed.). Elsevier, Academic Press, 2014.
39. Nguyen, T. N., Tran, P. T., Minh, T. H. Q., Voznak, M., and Sevcik, L. Two-way half duplex decode and forward relaying network with hardware impairment over Rician fading channel: system performance analysis. Elektron. Elektrotech., 2018, 24(2), 74–78.
https://doi.org/10.5755/j01.eie.24.2.20639
40. Ye, Y., Li, Y., Wang, D., Zhou, F., Hu, R. Q., and Zhang, H. Optimal transmission schemes for DF relaying networks using SWIPT. IEEE Trans. Vehicular Technol., 2018, 67(8), 7062–7072.
https://doi.org/10.1109/TVT.2018.2826598
41. Tin, P. T., Hung, D., T, Nguyen, T. N., Duy, T. T., and Voznak, M. Secrecy performance enhancement for underlay cognitive radio networks employing cooperative multi-hop transmission with and without presence of hardware impairments. Entropy, 2019, 21(2), article No. 217.
https://doi.org/10.3390/e21020217
42. Nguyen, T. N., Tran, M., Tran, P. T., Tin, P. T., Nguyen, T-L., Ha, D-H., and Voznak, M. On the performance of power splitting energy harvested wireless full-duplex relaying network with imperfect CSI over dissimilar channels. Secur. Commun. Netw., 2018, article ID 6036087.
https://doi.org/10.1155/2018/6036087
43. Tin, P. T., Nguyen, T. N., Tran, M., Trang, T. T., and Sevcik, L. Exploiting direct link in two-way half-duplex sensor network over block Rayleigh fading channel: upper bound ergodic capacity and exact SER analysis. Sensors, 2020, 20(4), article No. 1165.
https://doi.org/10.3390/s20041165