ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Initial objects, terminal objects, zero objects, and equalizers in the category Seg of Segal topological algebras; pp. 361–367
PDF | 10.3176/proc.2020.4.10

Author
Mart Abel
Abstract

In this paper the initial, terminal, and zero objects in the category Seg of Segal topological algebras are described and some sufficient conditions under which the equalizers in Seg exist are found.

References

1. Abel, M. Generalisation of Segal algebras for arbitrary topological algebras. Period. Math. Hung., 2018, 77(1), 58–68.
https://doi.org/10.1007/s10998-017-0222-z

2. Abel, M. Initial, terminal and zero objects in the category S (B) of Segal topological algebras. In Proceedings of the ICTAA 

2018Math. Stud. (Tartu), 2018, 7, 7–24.

3. Abel, M. About products in the category S (B) of Segal topological algebras. In Proceedings of the ICTAA 2018Math. Stud. 

(Tartu), 2018, 7, 25–32.

4. Abel, M. About some categories of Segal topological algebras. Poincare J. Anal. Appl., 2019, 1, 1–14.
https://doi.org/10.46753/pjaa.2019.v06i01.001

5. Abel, M. Products and coproducts in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2019, 68, 88–99.
https://doi.org/10.3176/proc.2019.1.09

6. Abel, M. About pushouts in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2019, 68, 319–323.
https://doi.org/10.3176/proc.2019.3.08

7. Abel, M. About the limits of inverse systems in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69, 1–10.

8. Abel, M. Coproducts in the category S (B) of Segal topological algebras, revisited. Period. Math. Hung., 2020, 81(2), 201–216. 
https://doi.org/10.1007/s10998-020-00328-z

9. Abel, M. About the cocompleteness of the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69, 53–56.
https://doi.org/10.3176/proc.2020.1.06

10. Abtahi, F., Rahnama, S., and Rejali, A. Segal Fréchet algebras. arXiv:1507.06577v1 (2015).
https://doi.org/10.1007/s10998-015-0092-1

11. Abtahi, F., Rahnama, S., and Rejali, A. Semisimple Segal Fréchet algebras. Period. Math. Hung., 2015, 71(2), 146–154.
https://doi.org/10.1007/s10998-015-0092-1

12. Burnham, J. T. Segal algebras and dense ideals in Banach algebras. In Functional Analysis and Its Applications (Internet. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan). Lecture Notes in Mathematics, Vol. 399, Springer, Berlin, 1974, 33–58.

13. Reiter, H. Subalgebras of L1(G). Nederl. Akad. Wetensch. Proc. Ser. A 68, Indag. Math., 1965, 27, 691–696.
https://doi.org/10.1016/S1385-7258(65)50071-8

14. Rotman, J. J. An Introduction to Homological Algebra. Second Edition. Springer, New York, 2009.
https://doi.org/10.1007/b98977

15. Segal, I. E. The group algebra of a locally compact group. Trans. Amer. Math. Soc., 1947, 61, 69–105.
https://doi.org/10.1090/S0002-9947-1947-0019617-4

16. Yousofzadeh, A. An extension of Segal algebras. Matematika (Johor), 2016, 32(1), 75–79.

17. Yousofzadeh, A. G-segal algebras. 
http://prof.mau.ac.ir/Images/Uploaded Files/segal[4150367].PDF, manuscript.

Back to Issue