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1. HISTORICAL OVERVIEW

The term ‘Segal algebra’ dates back for more than 55 years. It was introduced by Hans Reiter (see [13]).
The notion of a Segal algebra was first used in the context of subalgebras of L1(G), where G was a locally
compact group. However, soon it was understood that this concept could be generalized to the case of
subalgebras of an arbitrary Banach algebra.

The algebra was called the Segal algebra in honour of Irwin Ezra Segal, who presented in [15] a set of
axioms (known as Segal’s axioms) which was used later in the definition. Segal himself tried to describe a
general algebraic structure underlying Wiener’s algebra, but he did not exploit this algebraic structure in a
systematic fashion. A good reference about the history of Segal algebras is [12].

The usual context of Segal algebras during the last 25 years has been the setting of Banach algebras.
About 5 years ago appeared some new generalizations to the case of locally multiplicatively convex (shortly,
lmc) Fréchet algebras by Abtahi, Rahnama, and Rejali (see [10] and [11]), who called their generalization
Segal Fréchet algebra, and to the case of complete lmc algebras by Yousofzadeh (see [16,17]).

In [1] (see also [2,4], etc.) it was demonstrated that one could actually take a much more general
approach by considering any topological algebras (over R or C) instead of limiting the study with Banach or
lmc (Fréchet or just complete) algebras. For some examples of Segal topological algebras one could check
the examples provided in [1].

In [1] the author’s motivation to study such general Segal topological algebras was to obtain results also
in the context of topological algebras whose topology can not be described with any family of seminorms.
For that, it was necessary to construct proofs without using the properties of seminorms.

After describing some properties of general Segal topological algebras, the categories S (B)and Seg
were introduced in [4] (the author of the present paper has not seen yet any other paper where the categories
of Segal topological algebras, even in Banach case, are studied). Since then, several categorical properties
of the category S (B) have already been studied in several papers (see [2,3,5–9]). The present paper is the
first attempt to study also the categorical properties of the category Seg.
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2. INTRODUCTION

By a topological algebra we will mean a topological linear space over the field K (here K could be either
the field R of real numbers or the field C of complex numbers) in which is defined a separately continuous
(associative, but not necessarily commutative) multiplication. For (topological) algebras A,B we will denote
by 1A : A→ A the identity map, i.e. 1A(a) = a for every a ∈ A, and by θ(A,B) : A→ B, a zero map which is
defined by θ(A,B)(a) = θB for every a ∈ A, where θB is the zero element of B.

The simplest topological algebra is the algebra Θ, which consists of just one element θ , namely the zero
element of Θ. The topology on Θ consists of sets Θ = {θ} and /0. This algebra is topologically isomorphic
to any other topological algebra which consists of only one element.

We will start with recalling the definition of a (general) Segal topological algebra, first published in [1].
A topological algebra (A,τA) is a left (right or two-sided) Segal topological algebra in a topological algebra
(B,τB) via an algebra homomorphism f : A→ B, if
(1) clB( f (A)) = B;
(2) τA ⊇ { f−1(U) : U ∈ τB};
(3) f (A) is a left (respectively, right or two-sided) ideal of B.

In short, we will denote a Segal topological algebra by a triple (A, f ,B). Condition (2) in the definition
of a Segal topological algebra is equivalent to the condition that f is continuous.

For any category C , we denote by Ob(C ) the set of all objects of C . For any K,L ∈ Ob(C ), we denote
by Mor(K,L) the set of all morphisms from K to L.

As everything will work similarly for left, right, or two-sided Segal topological algebras, we will not
mention the sideness in the paper. For better understanding, the reader can think about the left Segal topo-
logical algebras, right Segal topological algebras, or two-sided Segal topological algebras, depending on
which class of ideals seems to be more familiar.

We will continue with recalling the definition of the category Seg of all Segal topological algebras,
which was first introduced in [4] together with the definition of a category S (B) of Segal topological
algebras. The category S (B) is more thoroughly studied in several papers (e.g. [2]). The category Seg has
all Segal topological algebras as its objects. For any (A, f ,B),(C,g,D), the set Mor((A, f ,B),(C,g,D)) of
morphisms from (A, f ,B) to (C,g,D) consists of all such pairs (α,β ) of continuous algebra homomorphisms
α : A → C and β : B → D for which g ◦ α = β ◦ f . Hence, in case (A, f ,B),(C,g,D) ∈ Ob(Seg) and
(α,β ) ∈Mor((A, f ,B),(C,g,D)), we have a commutative diagram

A
f−−−−→ Byα

yβ

C
g−−−−→ D

.

The composition of morphisms of Seg is defined componentwise as follows: for any (A, f ,B),(C,g,D),
(E,h,F)∈ Ob(Seg) and arbitrary morphisms (α,β ) : (A, f ,B)→ (C,g,D), (γ,δ ) : (C,g,D)→ (E,h,F), the
composition of (γ,δ ) and (α,β ) is (γ,δ )◦ (α,β ) = (γ ◦α,δ ◦β ).

In [4], pp. 2–4, it is shown that this composition of morphisms is correctly defined and associative.
Moreover, it is shown that the identity morphism for an object (A, f ,B) of Seg is a pair (1A,1B) of identity
maps.

Fix a topological algebra B. The category S (B) of Segal topological algebras is a subcategory of Seg
having as objects all Segal topological algebras in the form (A, f ,B), where A and f vary, but B is fixed.
The morphisms between (A, f ,B),(C,g,B) ∈ Ob(S (B)) are pairs (α,1B), where α : A→C denotes such
continuous algebra homomorphism for which f = 1B ◦ f = g◦α . Since here all the objects have one fixed
topological algebra (in our case B) and one fixed algebra homomorphism (in our case 1B), it was easier to
study the properties of the category S (B) first. In the present paper we begin the study of the properties of
a more complex category Seg.
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3. INITIAL, TERMINAL, AND ZERO OBJECTS IN THE CATEGORY SEG

Let us recall from the category theory that an object K of a category C is
(a) an initial object (see for example [14], p. 216) of the category C if for any object L ∈ C the set

Mor(K,L) consists of exactly one morphism;
(b) a terminal object (see for example [14], p. 218) of the category C if for any object L ∈ C the set

Mor(L,K) consists of exactly one morphism;
(c) a zero object (see for example [14], p. 226) of the category C if K is both the initial and the terminal

object of the category C .
In [2], the initial, terminal, and zero objects of the category S (B) are described through the properties

of the topological algebra B. As we will show below, the description of initial, terminal, and zero objects is
more simple in the case of the category Seg.

Consider the objects (A, f ,B),(C,g,D) of Seg and the pair (θ(A,C),θ(B,D)) of zero maps θ(A,C) : A→C,
θ(B,D) : B→ D. Obviously θ(A,C) and θ(B,D) are continuous algebra homomorphisms. Moreover,

g◦θ(A,C) = θ(A,D) = θ(B,D) ◦ f .

Hence, (θ(A,C),θ(B,D)) ∈ Mor((A, f ,B),(C,g,D)) and Mor((A, f ,B),(C,g,D)) 6= /0 for any pair
((A, f ,B),(C,g,D)) of objects of Seg.

Proposition 1. In the category Seg, the following claims hold:
(a) every initial object of Seg is topologically isomorphic to (Θ,1Θ,Θ);
(b) every terminal object of Seg is topologically isomorphic to (Θ,1Θ,Θ);
(c) every zero object of Seg is topologically isomorphic to (Θ,1Θ,Θ).

Proof. Notice that (Θ,1Θ,Θ) ∈ Ob(Seg). Obviously, (Θ,1Θ,Θ) is an initial object of Seg because for any
(C,g,D) ∈ Ob(Seg) the set Mor((Θ,1Θ,Θ),(C,g,D)) consists of exactly one pair (θ(Θ,C),θ(Θ,D)).

Similarily, (Θ,1Θ,Θ) is a terminal object of Seg, because for any (C,g,D) ∈ Ob(Seg), the set
Mor((C,g,D),(Θ,1Θ,Θ)) consists of exactly one pair (θ(C,Θ),θ(D,Θ)). With this we have also shown that
(Θ,1Θ,Θ) is a zero object of Seg.

Take any (A, f ,B) ∈ Ob(Seg) and suppose that (A, f ,B) is either an initial object of Seg or a terminal
object of Seg. It means that there exists exactly one morphism (α,β ) ∈ Mor((A, f ,B),(A, f ,B)). From
what was noticed before, we know that (1A,1B),(θ(A,A),θ(B,B)) ∈ Mor((A, f ,B),(A, f ,B)). As there could
be only one element in Mor((A, f ,B),(A, f ,B)), we must have 1A = θ(A,A) and 1B = θ(B,B), which means
that A = 1A(A) = θ(A,A)(A) = θA and B = 1B(B) = θ(B,B)(B) = θB. Hence, both A and B are topologically
isomorphic to Θ and (A, f ,B) is topologically isomorphic to (Θ,1Θ,Θ). Therefore every initial or terminal
object of Seg is topologically isomorphic to (Θ,1Θ,Θ).

Suppose that (A, f ,B) ∈ Ob(Seg) is a zero object of Seg. Then (A, f ,B) is also an initial object of Seg,
which means that (A, f ,B) is topologically isomorphic to (Θ,1Θ,Θ). With this we have proved that the
category Seg has (within topological isomorphism) exactly one initial, exactly one terminal, and exactly one
zero object, all of which are in the form (Θ,1Θ,Θ).

4. EQUALIZERS IN THE CATEGORY SEG

In a category C with K,L ∈ Ob(C ) and α1,α2 ∈Mor(K,L), the equalizer (see for example [14], p. 225) of
morphisms α1 and α2 is the pair (M,δ ), where M ∈ Ob(C ) and δ ∈Mor(M,K) are such that the following
two conditions hold:
(1) α1 ◦δ = α2 ◦δ ;
(2) for any pair (N,ε) with N ∈ Ob(C ) and ε ∈ Mor(N,K) such that α1 ◦ ε = α2 ◦ ε , there exists a unique

morphism λ : N→M such that ε = γ ◦λ .
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It is well known in category theory that the equalizer of two morphisms α1,α2 ∈ Mor(K,L) in any
universal algebraic category (including the categories Sets of all sets, Ring of rings and Alg of algebras over
the field K) is the pair (K0,1K0), where K0 = {k ∈ K : α1(k) = α2(k)} and 1K0 is just the inclusion map.
In the category TopAlg of all topological algebras, the only difference with the category Alg is that every
object is a topological algebra and the morphisms are continuous algebra homomorphisms. The equalizer of
α1,α2 ∈ Mor(K,L) in TopAlg is still the same pair (K0,1K0) because the (topological) inclusion is always
continuous.

In [4], p. 5, the definition for an equalizer in the category S (B) is given. Hereby, we generalize this
definition for the category Seg as follows.

Definition 1. Let (A, f ,B),(C,g,D) ∈ Ob(Seg). The equalizer of morphisms
(α1,β1),(α2,β2) ∈Mor((A, f ,B),(C,g,D))

is a pair ((E,h,F);(γ,δ )) such that
(1) (E,h,F) ∈ Ob(Seg) and (γ,δ ) ∈Mor((E,h,F),(A, f ,B)) with α1 ◦ γ = α2 ◦ γ and β1 ◦δ = β2 ◦δ ;
(2) for any pair ((G, j,H);(ε,ξ )) with (G, j,H) ∈ Ob(Seg) and (ε,ξ ) ∈Mor((G, j,H),(A, f ,B)) with

α1 ◦ ε = α2 ◦ ε and β1 ◦ξ = β2 ◦ξ , there exists unique (λ ,µ) ∈Mor((G, j,H),(E,h,F)) with ε = γ ◦λ

and ξ = δ ◦µ:

G H

E F

A B

C D

j

λ

ε ξ

µ

h

γ δ

f

α1 α2 β1 β2

g

.

We show that if the equalizer ((E,h,F);(γ,δ )) of morphisms (α1,β1),(α2,β2)∈Mor((A, f ,B),(C,g,D))
exists, then (E;δ ) has to be the equalizer of morphisms α1,α2 ∈Mor(A,C) in the category TopAlg of topo-
logical algebras. Hence, E has to be topologically isomorphic to A0 = {a ∈ A : α1(a) = α2(a)}, equipped
with the subspace topology inherited from the topology of A.

Lemma 1. Let (A, f ,B),(C,g,D) ∈ Ob(Seg), A0 = {a ∈ A : α1(a) = α2(a)} and
(α1,β1),(α2,β2) ∈ Mor((A, f ,B),(C,g,D)). If there exist such (E,h,F) ∈ Ob(Seg) and
(γ,δ ) ∈Mor((E,h,F),(A, f ,B)) that ((E,h,F);(γ,δ )) is the equalizer of morphisms (α1,β1) and (α2,βw),
then E is topologically isomorphic to A0 through some topological isomoprhism σ : E→A0 and δ = 1A0 ◦σ .

Proof. Suppose that ((E,h,F);(γ,δ )) is the equalizer of morphisms (α1,β1),(α2,β2) in the category Seg
of Segal topological algebras. Take any topological algebra G and a continuous algebra homomorphism
ε : G→ A such that α1 ◦ ε = α2 ◦ ε . Then (G,1G,G) ∈ Ob(Seg) and there exists a continuous algebra
homomorphism ξ = f ◦ ε : G→ B such that

β1 ◦ξ = β1 ◦ ( f ◦ ε) = (β1 ◦ f )◦ ε = (g◦α1)◦ ε = g◦ (α1 ◦ ε)

= g◦ (α2 ◦ ε) = (g◦α2)◦ ε = (β2 ◦ f )◦ ε = β2 ◦ ( f ◦ ε) = β2 ◦ξ .

Thus, ((G,1G,G);(ε,ξ )) satisfies the assumptions of condition (2) of the equalizer of (α1,β1) and (α2,β2).
Hence, by Definition 1, there exists unique (λ ,µ) ∈ Mor((G,1G,G),(E,h,F)) such that ε = γ ◦ λ and
ξ = δ ◦ µ . This means also that there exists unique λ ∈ Mor(G,E) such that ε = γ ◦λ . As this holds for
every topological algebra G and a continuous algebra homomorphism ε : G→ A such that α1 ◦ ε = α2 ◦ ε ,
then (E,δ ) is the equalizer of α1 and α2 in the category TopAlg of topological algebras. As the equalizer is
unique up to isomorphism, then E is topologically isomorphic to A0 through some topological isomorphism
σ : E→ A0 and δ = 1A0 ◦σ .



M. Abel: Objects in the category Seg 365

By Lemma 1, the equalizer of (α1,β1),(α2,β2) ∈ Mor((A, f ,B),(C,g,D)), if it exists, has the form
(A0,h,F). So, we have to work only with the Segal topological algebras in the form (A0,h,F), where F is
some topological algebra.

We will state the following proposition in the case of left Segal topological algebras. In the case
of right or two-sided Segal topological algebras one should demand that f (A0)F ⊆ f (A0) or that both
F f (A0), f (A0)F ⊆ f (A0).

Proposition 2. Suppose that (A, f ,B),(C,g,D)∈Ob(Seg) and (α1,β1),(α2,β2)∈Mor((A, f ,B),(C,g,D)).
Set A0 = {a ∈ A : α1(a) = α2(a)}, B0 = {b ∈ B : β1(b) = β2(b)}, F = clB( f (A0)) ∩ B0 and
F1 = {b ∈ F : b f (A0)⊆ f (A0)}. Then A0 is a subalgebra of A and, equipped with the subspace topology, is
a topological algebra. Also B0, F, and F1 are subalgebras of B and, equipped with the subspace topology,
are topological algebras.
(a) If clB(F1) = F1, then the equalizer of morphisms (α1,β1),(α2,β2) exists and is of the form

((A0,h,F1);(γ,δ )), where h = f |A0 ,γ = 1A0 and δ = 1F1 .
(b) If F f (A0) ⊆ f (A0), then the equalizer of morphisms (α1,β1),(α2,β2) exists and is of the form

((A0,h,F);(γ,δ )), where h = f |A0 ,γ = 1A0 and δ = 1F .

Proof. It is easy to check that A0 and B0 are subalgebras of A and B, respectively, because the maps
α1,α2,β1, and β2 are algebra homomorphisms. As f is an algebra homomorphism, then f (A0) is a sub-
algebra of B. As f is also continuous, then clB( f (A0)) is a closed subalgebra of B. Hence, F , as the
intersection of two sublagebras of B, is also a subalgebra of B. Because f (A0) is a subalgebra of B, the set
F1 is also a subalgebra of B. Equipping a subalgebra of a topological algebra with the subspace topology
results in a topological algebra.

(a) Take any a1,a2 ∈ A0 and λ ∈K. Then

α1(a1 +a2) = α1(a1)+α1(a2) = α2(a1)+α2(a2) = α2(a1 +a2)

and

α1(λa1) = λα1(a1) = λα2(a1) = α2(λa1).

Hence, a1 + a2,λa1 ∈ A0. Now, take any b1,b2 ∈ h(A0) and λ ∈ K. Then there exist a1,a2 ∈ A0 such
that b1 = h(a1) and b2 = h(a2). As f is an algebra homomorphism, then h = f |A0 is also an algebra
homomorphism and

b1 +b2 = h(a1)+h(a2) = h(a1 +a2) ∈ h(A0), λb1 = λh(a1) = h(λa1) ∈ h(A0).

By the definition of F1,

F1h(A0) = F1 f |A0(A0) = F1 f (A0)⊆ f (A0) = f |A0(A0) = h(A0).

Thus, h(A0) is a left ideal of F1. Notice that F1 ⊆ clB( f (A0)). Hence, clF1( f (A0)) = clB( f (A0))∩F1 = F1,
which means that f (A0) is dense in F1. Moreover, as f is a continuous map, then h = f |A0 is also continuous.
Therefore, h(A0) is a dense left ideal of F1 and (A0,h,F1) ∈ Ob(Seg).

Notice that (α1 ◦ γ)(a) = α1(a) = α2(a) = (α2 ◦ γ)(a) for every a ∈ A0 and
(β1 ◦δ )(b) = β1(b) = β2(b) = (β2 ◦δ )(b) for every b ∈ F1. Hence, α1 ◦ γ = α2 ◦ γ and β1 ◦δ = β2 ◦δ .

Suppose that there are (G, j,H)∈Ob(Seg) and (ε,ζ )∈Mor((G, j,H),(A, f ,B)) such that α1◦ε =α2◦ε

and β1 ◦ζ = β2 ◦ζ . Take any g ∈ G. Then α1(ε(g)) = (α1 ◦ ε)(g) = (α2 ◦ ε)(g) = α2(ε(g)), which means
that ε(g) ∈ A0. Thus, ε(G)⊆ A0 and there exists exactly one map λ = ε : G→ A0 such that ε = γ ◦λ
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G H

E F

A B

C D

j

λ

ε ζ

µ

h

γ δ

f

α1 α2 β1 β2

g

.

Notice that as f (A0)⊆ F1, then ζ ( j(g)) = f (ε(g)) ∈ f (A0)⊆ F1 for every g ∈G. Hence, ζ ( j(G))⊆ F1.
As the map ζ is continuous, then, using the assumption clB(F1) = F1, we obtain that

ζ (H) = ζ (clH( j(G)))⊆ clB(ζ ( j(G)))⊆ clB(F1) = F1.

Hence, there exists exactly one map µ = ζ : H→ F1 such that ζ = 1F1 ◦µ = δ ◦µ .
With this, we have shown that there exists unique morphism (λ ,µ) = (ε,ζ )∈Mor((G, j,H),(A0,h,F1))

such that ε = γ ◦λ and ζ = δ ◦µ . Hence, ((A0,1A0 ,F1);(1A0 ,1F1)) is the equalizer of (α1,β1) and (α2,β2).
(b) As F f (A0)⊆ f (A0), then F1 = F . Set h = f |A0 , δ = 1A0 and δ = 1F . Exactly as in the part (a) of the

proof, we can show that (A0,h,F) ∈ Ob(Seg).
Suppose that there are (G, j,H)∈Ob(Seg) and (ε,ζ )∈Mor((G, j,H),(A, f ,B)) such that α1◦ε =α2◦ε

and β1 ◦ ζ = β2 ◦ ζ . Exactly as in the part (a) of the proof, we can show that there exists exactly one map
λ = ε : G→ A0 such that ε = γ ◦λ .

Take any x ∈ H. Then one has β1(ζ (x)) = (β1 ◦ ζ )(x) = (β2 ◦ ζ )(x) = β2(ζ (x)), which means that
ζ (x) ∈ B0. On the other hand, as H = clH( j(G)), there exists a family (gκ)κ∈K such that the family j(gκ)
converges to x. Now it follows from the continuity of ζ that the family ( f ◦ ε)(gκ) = (ζ ◦ j)(gκ) converges
to ζ (x). As ( f ◦ ε)(gκ) ∈ f (ε(G)) ⊆ f (A0) for every κ ∈K , then ζ (x) ∈ clB( f (A0)). Hence, ζ (H) ⊆ F
and there exists exactly one map µ = ζ : H→ F such that ζ = δ ◦µ .

With this we have shown that there exists unique morphism (λ ,µ) = (ε,ζ ) ∈Mor((G, j,H),(A0,h,F))
such that ε = γ ◦λ and ζ = δ ◦µ . Thus, ((A0,1A0 ,F);(1A0 ,1F)) is the equalizer of (α1,β1) and (α2,β2).

Remark 1. Notice that if the assumptions of parts (a) and (b) of Theorem 1 are fulfilled at the same time,
then F1 = F .

Corollary 1. Suppose that (A, f ,B),(C,g,D) ∈ Ob(Seg) and (α1,β1),(α2,β2) ∈ Mor((A, f ,B),(C,g,D)).
Set A0 = {a ∈ A : α1(a) = α2(a)}, B0 = {b ∈ B : β1(b) = β2(b)}, and F = clB( f (A0)) ∩ B0. If
B0 f (A0) ⊆ f (A0), then the equalizer of morphisms (α1,β1),(α2,β2) exists and is of the form
((A0,h,F);(γ,δ )), where h = f |A0 ,γ = 1A0 and δ = 1F .

Proof. As F ⊆ B0, then F f (A0)⊆ B0 f (A0)⊆ f (A0). Hence, the claim follows from the part (b) of Propo-
sition 2.

Open questions. (1) We have seen that the conditions clB(F1)=F1 and F f (A0)⊆ f (A0) of Proposition 2
are both sufficient for the existence of an equalizer. Is any of these conditions actually a necessary condition
for the existence of an equalizer?

(2) Which are the necessary and sufficient conditions for the existence of equalizers in Seg?

5. CONCLUSIONS

In the present paper we started the study of the category Seg of Segal topological algebras by describing the
initial, terminal, and zero objects in this category and finding some sufficient conditions under which the
equalizers exist in this category.
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Alg-, lõpp- ja nullobjektidest ning võrdsustajatest Segali topoloogiliste algebrate
kategoorias Seg

Mart Abel

On alustatud Segali topoloogiliste algebrate kategooria Seg kategoorsete omaduste uurimist. Sel teel on
antud selle kategooria kõigi alg-, lõpp- ja nullobjektide kirjeldused ning leitud mõned piisavad tingimused
selleks, et selles kategoorias eksisteeriksid võrdsustajad.
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