The paper presents a brief overview of the most popular disturbance estimation techniques together with their application to flatness-based control. Two disturbance estimation approaches, the basic disturbance observer and the extended state observer, are described in a tutorial manner. Positive and negative aspects of both approaches are pointed out. Open research questions on disturbance estimation are presented. In the second part of the paper it is demonstrated how to integrate disturbance estimation into flatness-based control. The basic feedback linearization based approach, but also a novel event-based approach for differentially flat systems, are described. It is shown that disturbance estimation can be integrated easily into both of these control approaches. Finally, the results are demonstrated on three models: a heating, ventilation and air-conditioning; an active magnetic bearing; and an underwater vehicle models.
1. Bu, X.-W., Wu, X.-Y., Chen, Y.-X., and Bai, R.-Y. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems. Int. J. Control Autom. Syst., 2015, 13(3), 595-602.
https://doi.org/10.1007/s12555-014-0173-6
2. Castillo, A., Garc ́ıa, P., Sanz, R., and Albertos, P. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA Trans., 2018, 73, 1-10.
https://doi.org/10.1016/j.isatra.2017.12.005
3. Chakrabarty, A., Corless, M. J., Buzzard, G. T., Zak, S. H., and Rundell, A. E. State and unknown input observers for nonlinear systems with bounded exogenous inputs. IEEE Trans. Autom. Control, 2017, 62(11), 5497-5510.
https://doi.org/10.1109/TAC.2017.2681520
4. Chang, J.-L. Robust Output Feedback Disturbance Rejection Control by Simultaneously Estimating State and Disturbance. J. Control Sci. Eng., 2011, 2011, 13 pages.
https://doi.org/10.1155/2011/568379
5. Chang, J.-L. Applying discrete-time proportional integral observers for state and disturbance estimations. IEEE Trans. Autom. Control, 2006, 51(5), 814-818.
https://doi.org/10.1109/TAC.2006.875019
6. Chaudhari, S. D., Shendge, P. D., and Phadke, S. B. Comment on 'Comments on "A new kind of nonlinear disturbance ob- server for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles"'. Int J. Control, 2018.
https://doi.org/10.1080/00207179.2018.1559361
7. Chen, W.-H. Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron., 2004, 9(4), 706-710.
https://doi.org/10.1109/TMECH.2004.839034
8. Chen, W. H. Development of nonlinear disturbance observer based control and nonlinear PID: a personal note. Control Theory and Technol., 2018, 16(4), 284-300.
https://doi.org/10.1007/s11768-018-8135-9
9. Chen, W.-H., Ballance, D. J., Gawthrop, P. J., and O'Reilly, J. A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron., 2000, 47(4), 932-938.
https://doi.org/10.1109/41.857974
10. Chen, W.-H., Yang, J., Guo, L., and Li, S. Disturbance-observer-based control and related methods - an overview. IEEE Trans. Ind. Electron., 2016, 63(2), 1083-1095.
https://doi.org/10.1109/TIE.2015.2478397
11. Chen, X., Su, C.-Y., and Fukuda, T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems. IEEE Trans. Control Syst.Technol., 2004, 12(4), 569-577.
https://doi.org/10.1109/TCST.2004.825135
12. Dasgupta, S., Sadhu, S., and Ghoshal, T. K. Designing disturbance observer for non-linear systems - a Hirschorn inverse approach. IET Sci., Meas. Technol., 2017, 11(2), 164-170.
https://doi.org/10.1049/iet-smt.2016.0105
13. Do, T. D. and Nguyen, H. T. A generalized observer for estimating fast varying disturbances. IEEE Access, 2018, 6, 28054-28063.
https://doi.org/10.1109/ACCESS.2018.2833430
14. Fliess, M., Le ́vine, J., Martin, P., and Rouchon, P. Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control, 1995, 61(6), 1327-1361.
https://doi.org/10.1080/00207179508921959
15. Fliess, M., Le ́vine, J., Martin, P., and Rouchon, P. A Lie-Ba ̈cklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Autom. Control, 1999, 44(5), 922-937.
https://doi.org/10.1109/9.763209
16. Ginoya, D., Shendge, P. D., and Phadke, S. B. Sliding-mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron., 2014, 61(4), 1983-1992.
https://doi.org/10.1109/TIE.2013.2271597
17. Grochmal, T. R. and Lynch, A. F. Precision tracking of a rotating shaft with magnetic bearings by nonlinear decoupled disturbance observers. IEEE Trans. Control Syst. Technol., 2007, 15(6), 1112-1121.
https://doi.org/10.1109/TCST.2006.890300
18. Guo, L. and Chen,W.-H. Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control, 2005, 15, 109-125.
https://doi.org/10.1002/rnc.978
19. Guoa, B.-Z. and Zhao, Z.-L. On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett., 2011, 60, 420-430.
https://doi.org/10.1016/j.sysconle.2011.03.008
20. Han, Y., Li, P., and Zheng, Z. A novel fixed-time sliding mode disturbance observer for a class of nonlinear systems with unmatched disturbances. In Proceedings of the 36th Chinese Control Conference. Dalian, China, 2017, 3652-3656.
https://doi.org/10.23919/ChiCC.2017.8027926
21. Isidori, A. Nonlinear control systems. Springer-Verlag, London, 1995.
https://doi.org/10.1007/978-1-84628-615-5
22. Johnson, C. D. Real-time disturbance-observers; origin and evolution of the idea part 1: the early years. In Proceedings of the 40th Southeastern Symposium on System Theory. New Orleans, USA, 2008, 88-91.
https://doi.org/10.1109/SSST.2008.4480196
23. Kaldmäe, A. and Kotta, Ü. Comments on "A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles". Int. J. Control, 2018.
https://doi.org/10.1080/00207179.2018.1529436
24. Kaldmäe, A., Kotta, Ü., Meurer, C., and Simha, A. Event-based control for differentially flat systems: application to autonomous underwater vehicle. In Proceedings of the 11th IFAC Symposium on Nonlinear Control Systems. Vienna, Austria, 2019.
https://doi.org/10.1016/j.ifacol.2019.11.775
25. Kayacan, E. and Fossen, T. I. Feedback linearization control for systems with mismatched uncertainties via disturbance observers. Asian J. Control, 2019, 21(4), 1-13.
https://doi.org/10.1002/asjc.1802
26. Kayacan, E., Peschel, J. M., and Chowdhary, G. A self-learning disturbance observer for nonlinear systems in feedback-error learning scheme. Eng. Appl. Artif. Intell., 2017, 62, 276-285.
https://doi.org/10.1016/j.engappai.2017.04.013
27. Kim, K. S. and Rew, K. H. Reduced order disturbance observer for discrete-time linear systems. Automatica, 2013, 49(4), 968-975.
https://doi.org/10.1016/j.automatica.2013.01.014
28. Kim, K.-S., Rew, K.-H., and Kim, S. Disturbance observer for estimating higher order disturbances in time-series expansion. IEEE Trans. Autom. Control, 2010, 55(8), 1905-1911.
https://doi.org/10.1109/TAC.2010.2049522
29. L'evine, J. Analysis and Control of Nonlinear Systems: A Flatness-based Approach. Springer, Berlin, 2009.
30. Li, J.-N. and Li, L.-S. Reliable control for bilateral teleoperation systems with actuator faults using fuzzy disturbance observer. IET Control Theory Appl., 2017, 11(3), 446-455.
https://doi.org/10.1049/iet-cta.2016.1089
31. Li, S., Yang, J., Chen, W.-H., and Chen, X. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Ind. Electron., 2012, 59(12), 4792-4802.
https://doi.org/10.1109/TIE.2011.2182011
32. Li, S., Yang, J., Chen,W.-H., and Chen, X. Disturbance Observer-Based Control: Methods and Applications. CRC Press, Boca Raton, 2014.
33. Liu, C., Liu, G., and Fang, J. Feedback linearization and extended state observer-based control for rotor-AMBs system with mismatched uncertainties. IEEE Trans. Ind. Electron., 2017, 64(2), 1313-1322.
https://doi.org/10.1109/TIE.2016.2612622
34. Lu, Y.-S. Sliding-mode disturbance observer with switching-gain adaptation and its application to optical disk drives. IEEE Trans. Ind. Electron., 2009, 56(9), 3743-3750.
https://doi.org/10.1109/TIE.2009.2025719
35. Ma, Y., Kelman, A., Daly, A., and Borrelli, F. Predictive control for energy efficient buildings with thermal storage: modeling, stimulation, and experiments. IEEE Control Syst. Mag., 2012, 32(1), 44-64.
https://doi.org/10.1109/MCS.2011.2172532
36. Maslen, E. H. Self-sensing magnetic bearings. In Magnetic Bearings: Theory, Design and Application to Rotating Machinery (Schweitzer, G. and Maslen, E. H., eds). Springer, Berlin/Heidelberg, 2013, 435-459.
https://doi.org/10.1007/978-3-642-00497-1_15
37. Mohammadi, A., Marquez, H. J., and Tavakoli, M. Nonlinear disturbance observers: design and applications to Euler-Lagrange systems. IEEE Control Syst. Mag., 2017, 37(4), 50-72.
https://doi.org/10.1109/MCS.2017.2696760
38. Nijmeijer, H. and van der Schaft, A. Nonlinear Dynamical Control Systems. Springer-Verlag, New York, 1990.
https://doi.org/10.1007/978-1-4757-2101-0
39. Noshadi, A., Shi, J., Lee, W. S., Shi, P., and Kalam, A. Repetitive disturbance observer-based control for an active magnetic bearing system. In Proceedings of the 5th Australian Control Conference. Gold Coast, Australia, 2015, 55-60.
https://ieeexplore.ieee.org/document/7361905
40. Peng, C., Fang, J., and Xu, X. Mismatched disturbance rejection control for voltage-controlled active magnetic bearing via state-space disturbance observer. IEEE Trans. Power Electron., 2015, 30(5), 2753-2762.
https://doi.org/10.1109/TPEL.2014.2352366
41. Ran, M., Wang, Q., and Dong, C. Active disturbance rejection control for uncertain nonaffine-in-control nonlinear systems. IEEE Trans. Autom. Control, 2017, 62(11), 5830-5836.
https://doi.org/10.1109/TAC.2016.2641980
42. Salumäe, T., Chemori, A., and Kruusmaa, M. Motion control of a hovering biomimetic four-fin underwater robot. IEEE J. Oceanic Eng., 2019, 44(1), 54-71.
https://doi.org/10.1109/JOE.2017.2774318
43. Sira-Ramirez, H. and Agrawal, S. K. Differentially Flat Systems. CRC Press, New York, 2004.
https://doi.org/10.1201/9781482276640
44. Su, J. and Chen, W.-H. Further results on "Reduced order disturbance observer for discrete-time linear systems". Automatica, 2018, 93, 550-553.
https://doi.org/10.1016/j.automatica.2018.04.032
45. Tan, L., Jin, G., Sun, C., and Xiong, Z. High-order disturbance observer for nonlinear systems using sliding-mode technology. In Proceedings of the 30th Chinese Control And Decision Conference. Shenyang, China, 2018, 1382-1386.
https://doi.org/10.1109/CCDC.2018.8407343
46. Tang, Z., Wang, C., and Ding, Z. Unmatched disturbance rejection for AMB systems via DOBC approach. In Proceedings of the 35th Chinese Control Conference. Chengdu, China, 2016, 5931-5935.
https://doi.org/10.1109/ChiCC.2016.7554287
47. Wang, S., Xu, Q., Lin, R., Yang, M., Zheng,W., andWang, Z. Feedback linearization control for electro-hydraulic servo system based on nonlinear disturbance observer. In Proceedings of the 36th Chinese Control Conference. Dalian, China, 2017, 4940-4945.
https://doi.org/10.23919/ChiCC.2017.8028135
48. Wang, Z., Li, S., Yang, J., and Li, Q. Current sensorless finite-time control for buck converters with time-varying disturbances. Control Eng. Pract., 2018, 77, 127-137.
https://doi.org/10.1016/j.conengprac.2018.05.014
49. Wei, X. and Guo, L. Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. Int. J. Control, 2009, 82(6), 1082-1098.
https://doi.org/10.1080/00207170802455339
50. Weiland, S. andWillems, J. C. Almost disturbance decoupling with internal stability. IEEE Trans. Autom. Control, 1989, 34(3), 277-286.
https://doi.org/10.1109/9.16417
51. Xu, D., Zhou, H., and Zhang, Q. Novel robust nonlinear control of magnetic bearing system based on extended state observer. In Proceedings of the 2014 International Conference on Mechatronics and Control. Jinzhou, China, 2014, 1402-1406.
https://doi.org/10.1109/ICMC.2014.7231784
52. Yang, J., Chen, W.-H., and Li, S. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Control Theory Appl., 2011, 5(18), 2053-2062.
https://doi.org/10.1049/iet-cta.2010.0616
53. Yang, J., Chen,W.-H., Li, S., and Chen, X. Static disturbance-to-output decoupling for nonlinear systems with arbitrary disturbance relative degree. Int. J. Robust Nonlinear Control, 2013, 23, 562-577.
https://doi.org/10.1002/rnc.1850
54. Yang, J., Li, S., and Yu, X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron., 2013, 60(1), 160-169.
https://doi.org/10.1109/TIE.2012.2183841
55. Yang, Z., Meng, B., and Sun, H. A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles. Int. J. Control, 2017, 90(9), 1935-1950.
https://doi.org/10.1080/00207179.2016.1229039
56. Zhan, K., Wang, Y., and Liu, L. Improved sliding-mode disturbance observer for nonlinear system. In Proceedings of the 10th International Conference on Modelling, Identification and Control. Guiyang, China, 2018, 1-5.
https://doi.org/10.1109/ICMIC.2018.8529954