We investigated the strength of the interactions of the elements of the Estonian network of payments (link weight of payments and volume of payments) by the realization of particular experiments. Specific statistical measures of this network, which combine the topology of the relations of the strength of links and nodes and their specific weights, were studied with the purpose of discovering beyond the topological architecture of our network and revealing aspects of its complex structure. Moreover, scale-free properties between the strengths and the degree values were found. We also identified clear patterns of structural changes in such a network over the analysed period.
1. Newman, M. E. J. Networks: An introduction. Oxford University Press, 2010.
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
2. Strogatz, S. H. Exploring complex networks. Nature, 2001, 410, 268–276.
https://doi.org/10.1038/35065725
3. Albert, R. and Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, 74, 47–91.
https://doi.org/10.1103/RevModPhys.74.47
4. Liu, Y. Y. and Barabási, A. L. Control principles of complex systems. Rev. Mod. Phys., 2016, 88(3), 035006–035064.
https://doi.org/10.1103/RevModPhys.88.035006
5. Faloutsos, M., Faloutsos, P., and Faloutsos, C. On power-law relationships of the internet topology. ACM SIGCOMM Comput. Commun. Rev., 1999, 9(4), 251–262.
https://doi.org/10.1145/316194.316229
6. Albert, R., Jeong, H., and Barabási, A. L. Diameter of the world wide web. Nature, 1999, 401, 130–131.
https://doi.org/10.1038/43601
7. Pagani, G. A. and Aiello, M. The power grid as a complex network: a survey. Physica A, 2013, 392(11), 2688–2700.
https://doi.org/10.1016/j.physa.2013.01.023
8. Newman, M. E. J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E, 2001, 64(1), 016131.
https://doi.org/10.1103/PhysRevE.64.016131
9. Davidsen, J., Ebel, H., and Bornholdt, S. Emergence of a small world from local interactions: modeling acquaintance networks. Phys. Rev. Lett., 2002, 88(12), 128701.
https://doi.org/10.1103/PhysRevLett.88.128701
10. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A. L. The large-scale organization of metabolic networks. Nature, 2000, 407(6804), 651–654.
https://doi.org/10.1038/35036627
11. Doye, J. Network topology of a potential energy landscape: a static scale-free network. Phys. Rev. Lett., 2002, 88(23), 238701.
https://doi.org/10.1103/PhysRevLett.88.238701
12. Guimerà, R. and Amaral, L. A. N. Modeling the world-wide airport network. Eur. J. Phys. B, 2004, 38(2), 381–385.
https://doi.org/10.1140/epjb/e2004-00131-0
13. Inaoka, H., Nimoniya, T., Taniguchi, K., Shimizu, T., and Takayasu, H. Fractal network derived from banking transactions – an analysis of network structures formed by financial institutions. Bank of Japan Working Papers, 2004.
14. Watts, D. J. Small Worlds: The Dynamics of Networks Between Order and Randomness. Princeton University Press, NJ, 2003.
15. Barabási, A. L. Scale-free networks: a decade and beyond science. Science, 2009, 325(5939), 412–413.
https://doi.org/10.1126/science.1173299
16. Rendón de la Torre, S., Kalda, J., Kitt, R., and Engelbrecht, J. On the topologic structure of economic complex networks: empirical evidence from large scale payment network of Estonia. Chaos Solitons Fractals, 2016, 90, 18–27.
https://doi.org/10.1016/j.chaos.2016.01.018
17. Barrat, A., Barthelemy, M., Pastor-Satorras, R., and Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA, 2004, 101(11), 3747–3752.
https://doi.org/10.1073/pnas.0400087101
18. Opsahl, T., Agneessens, F., and Skvoretz, J. Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Networks, 2010, 32(3), 245–251.
https://doi.org/10.1016/j.socnet.2010.03.006
19. Xiang, J., Hu, K., Zhang, Y., Hu, T., and Li, J. M. Analysis and perturbation of degree correlation in complex networks. Europhys. Lett., 2015, 111(4), 48003.
https://doi.org/10.1209/0295-5075/111/48003
20. Boguña, M. and Pastor-Satorras, R. Epidemic spreading in correlated complex networks. Phys. Rev. E, 2002, 66(4), 047104.
https://doi.org/10.1103/PhysRevE.66.047104
21. Nie, T., Guo, Z., Zhao, K., and Zhe-Ming, Lu. The dynamic correlation between degree and betweenness of complex network under attack. Physica A, 2016, 457(1), 129–137.
https://doi.org/10.1016/j.physa.2016.03.075
22. Zemp, D. C., Wiedermann, M., Kurths, J., Rammig, A., and Donges, J. F. Node-weighted measures for complex networks with directed and weighted edges for studying continental moisture recycling. Europhys. Lett., 2014, 107(5), 58005.
https://doi.org/10.1209/0295-5075/107/58005
23. Newman, M. E. J. Analysis of weighted networks. Phys. Rev. E, 2004, 70(5), 056131.
https://doi.org/10.1103/PhysRevE.70.056131
24. Souma, W., Fujiwara, Y., and Aoyama, H. Heterogeneous economic networks. In The Complex Networks of Economic Interactions (Namatame, A., Kaizouji, T., and Aruka, Y., eds), Lecture Notes in Economics and Mathematical Systems, 2006, 567, 79–92. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-28727-2_5
25. Rotundo, G. and D’Arcangelis, A. M. Ownership and control in shareholding networks. J. Econ. Interact Coord., 2010, 5(2), 191–219.
https://doi.org/10.1007/s11403-010-0068-4
26. Reyes, J., Schiavo, S., and Fagiolo, G. Assessing the evolution of international economic integration using random-walk betweenness centrality: the cases of East Asia and Latin America. Advs. Complex Syst., 2007, 11(5), 685–702.
https://doi.org/10.1142/S0219525908001945
27. Battiston, S., Rodrigues, J. F., and Zeytinoglu, H. The network of inter-regional direct investment stocks across Europe. Advs. Complex Syst., 2007, 10(1), 29–51.
https://doi.org/10.1142/S0219525907000933
28. Glattfelder, J. B. and Battiston, S. Backbone of complex networks of corporations: the flow of control. Phys. Rev. E, 2009, 80(3), 036104.
https://doi.org/10.1103/PhysRevE.80.036104
29. Nakano, T. and White, D. Network structures in industrial pricing: the effect of emergent roles in Tokyo supplier-chain hierarchies. Struct. and Dyn., 2007, 2(3), 130–154.
30. Lublóy, A. Topology of the Hungarian large-value transfer system. Magyar Nemzeti Bank (Central Bank of Hungary) MNB Occasional Papers, 2006, 57.
31. Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., and Beyeler, W. E. The topology of interbank payment flows. Physica A, 2007, 379(1), 317–333.
https://doi.org/10.1016/j.physa.2006.11.093
32. Boss, M., Helsinger, H., Summer, M., and Thurner, S. The network topology of the interbank market. Quant. Finance, 2004, 4(6), 677–684.
https://doi.org/10.1080/14697680400020325
33. Iori, G. and Jafarey, S. Criticality in a model of banking crisis. Physica A, 2001, 299(1), 205–212.
https://doi.org/10.1016/S0378-4371(01)00297-7
34. Iori, G., De Masi, G., Precup, O. V., Gabbi, G., and Caldarelli, G. A network analysis of the Italian overnight money market. J. Econ. Dyn. Control., 2007, 32(1), 259–278.
https://doi.org/10.1016/j.jedc.2007.01.032
35. Safdari, H., Zare Kamali, M., Shirazi, A., Khalighi, M., Jafari, G., and Ausloos, M. Fractional dynamics of network growth constrained by aging node interactions. PLOS ONE, 2016, 11(5), e0154983.
https://doi.org/10.1371/journal.pone.0154983
36. Varela, L. M., Rotundo, G., Ausloos, M., and Carrete Montana, J. Complex network analysis in socioeconomic models. In Complexity and Geographical Economics (Commendatore, P., Kayam, S., and Kubin, I., eds), Dynamic Modeling and Econometrics in Economics and Finance, 2015, 19. Springer, Cham.
https://doi.org/10.1007/978-3-319-12805-4_9
37. Chapelle, A. and Szafarz, A. Controlling firms through the majority voting rule. Physica A, 2005, 355(2–4), 509–529.
https://doi.org/10.1016/j.physa.2005.03.026
38. Kaluza, P., Kölzsch, A., Gastner, M. T., and Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface, 2010, 7(48), 1093–1103.
https://doi.org/10.1098/rsif.2009.0495