ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Products and coproducts in the category S(B) of Segal topological algebras; pp. 89–99
PDF | https://doi.org/10.3176/proc.2019.1.09

Author
Mart Abel
Abstract

Let B be a topological algebra and S(B) the category of Segal topological algebras. In the present paper we show that all coproducts of two objects of the category S(B) always exist. We also find necesssary and sufficient conditions under which the products of two objects of the category S(B) exist.

References

1. Abel, M. Generalisation of Segal algebras for arbitrary topological algebras. Period. Math. Hung., 2018, 77(1), 58–68.
https://doi.org/10.1007/s10998-017-0222-z

2. Abel, M. About some categories of Segal topological algebras. Poincare J. Anal. Appl., (submitted).

3. Abel, M. Initial, terminal and zero objects in the category S(B) of Segal topological algebras. In Proceedings of the ICTAA 2018; Math. Stud. (Tartu), 2018, 7, 7–24.

4. Abel, M. About products in the category S(B) of Segal topological algebras. In Proceedings of the ICTAA 2018; Math. Stud. (Tartu), 2018, 7, 25–32.

5. Beidar, K. I., Martindale III, W. S., and Mikhalev, A. V. Rings with Generalized Identities. Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996.

6. Rotman, J. J. An Introduction to Homological Algebra. Second Edition. Springer, New York, 2009.
https://doi.org/10.1007/b98977

Back to Issue