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Abstract. Let B be a topological algebra and S(B) the category of Segal topological algebras. In the present paper we show that
all coproducts of two objects of the category S(B) always exist. We also find necesssary and sufficient conditions under which the
products of two objects of the category S(B) exist.
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1. INTRODUCTION

The study of Segal topological algebras started in [1]. It was followed by [2], where the category S(B)
of Segal topological algebras was represented as triples (A, f ,B) where B was fixed. Further study of the
category S(B) was carried out in [3].

The present paper deals with the question of the existence of products and coproducts of objects in the
category S(B). While the coproducts exist always and have a form similar to the form of coproducts in the
category of algebras, the products might or might not exist and have a bit different description, similar to
the description of a Whitney sum known in the theory of fibre spaces.

Let us start by recalling the necessary definitions from [1] and [2].
A topological algebra is a topological linear space over the field K (where K stands for either R or C),

in which there is defined a separately continuous associative multiplication.
A topological algebra (A,τA) is a left (right or two-sided) Segal topological algebra in a topological

algebra (B,τB) via an algebra homomorphism f : A → B if
(1) clB( f (A)) = B;
(2) f is continuous;
(3) f (A) is a left (respectively, right or two-sided) ideal of B.

Notice that condition (2) is equivalent to the following condition:

(2′)τA ⊇ { f−1(U) : U ∈ τB},

used in [1]. In what follows, we will denote a Segal topological algebra shortly by a triple (A, f ,B).
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From now on, we will fix a topological algebra (B,τB), which we will not change for this paper. The
set Ob(S(B)) of objects of the category S(B) will consist of all Segal topological algebras in the same
topological algebra B, i.e., all Segal algebras in the form of triples (A, f ,B),(C,g,B), ....

The set Mor((A, f ,B),(C,g,B)) of morphisms between Segal topological algebras (A, f ,B) and (C,g,B)
will consist of all continuous algebra homomorphisms α : A → C with the property g(α(a)) = f (a) for
every a ∈ A

In [2], it was shown that S(B) is really a category, but not an additive category. In what follows, we will
denote by 1A : A → A the identity map on A for every algebra A, i.e., 1A(a) = a for every a ∈ A. It is easy to
see that if B0 is a dense left (right or two-sided) ideal of B, then (B0,1B0 ,B) ∈ Ob(S(B)).

For conciseness of the text, we will write everywhere just “ideal” instead of “left (right or two-sided)
ideal”. In what follows, every claim about “ideal” holds in all three cases. One just has to fix the sideness
of all ideals and then to continue with the same sideness throughout the paper.

2. FREE PRODUCT OF TWO OBJECTS OF THE CATEGORY S(B)

In algebra it is known that, for any finite collection V1, . . . ,Vn of linear spaces, their tensor product
V1 ⊗·· ·⊗Vn is a linear space and consists of all finite sums of the form

k

∑
j=1

v j,i ⊗·· ·⊗ v j,n,

where k ∈ N is finite and v j,i ∈Vi for every i ∈ {1, . . . ,n}.
It is also known in algebra that, for any collection (Ai)i∈N of linear spaces, their direct sum⊕

n∈N
An

consists of all tuples (ai)i∈N with ai ∈ Ai for every i ∈ N and ai = θAi for all but finitely many i ∈ N. Hence,
we can write a general element (Ai)i∈N ̸= (θAi)i∈N of the direct sum of algebras (Ai)i∈N in the form

(ai)i∈N =
k⊕

l=1

bl

for some k ∈ Z+ = {1,2, . . .}, where there exist j1, . . . , jk ∈ N with 1 6 j1 < j2 < jk such that

ai =

{
bl if i = jl for some l ∈ {1, . . . ,k}
θAi , otherways

.

For simplicity, let us denote the element (θAi)i∈N by

1⊕
l=1

bl,
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where b1 = θA1 . By doing it, we can write every element of the direct sum in the form

k⊕
l=1

bl

for some k ∈ Z+, some j1, . . . , jk ∈ N with 1 6 j1 < j2 < jk, and some b1 ∈ A j1 ,b2 ∈ A j2 . . . ,bk ∈ A jk .
Next, we follow the ideas of [5], p. 9, about the free product of modules over a commutative unital

ring. In our case, we will apply them to algebras and give the formulas for algebraic operations for the
general element of the free product of two algebras over the field K.

Let A and C be algebras, which are made disjoint by setting a = (a,1) and c = (c,2) for every a ∈ A and
c ∈C if A∩C ̸= /0 originally. Consider the set

T = A⊕C⊕A⊗A⊕A⊗C⊕C⊗A⊕C⊗C⊕A⊗A⊗A⊕ . . . .

By the aforementioned formulas, we can write every element of T in the form

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

for some n,k1, . . . ,kn,N1, . . . ,Nn ∈ Z+ and for some ti, j,l ∈ A∪C.
For every

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni , s =
m⊕

i=1

li

∑
j=1

si, j,1 ⊗·· ·⊗ si, j,Mi

and λ ∈K, define the operations on T as follows:

t + s =
n+m⊕
p=1

qp

∑
j=1

rp, j,1 ⊗·· ·⊗ rp, j,Kp ,

where

Kp =

{
Np if p 6 n
Mp if n < p

, qp =

{
kp if p 6 n
lp if n < p

, rp, j,i =

{
tp, j,i if p 6 n
sp−n, j,i if n < p

,

λ t =
n⊕

i=1

ki

∑
j=1

λ ti, j,1 ⊗·· ·⊗ ti, j,Ni ,

and

ts =
nm⊕
p=1

k⌈ p
m ⌉l

p−m⌊ p−1
m ⌋

∑
j=1

qp, j,1 ⊗·· ·⊗qp, j,N⌈ p
m ⌉+M

p−m⌊ p−1
m ⌋ ,

where

qp, j,i =


t
⌈ p

m⌉,
⌈

j
k⌈ p

m ⌉

⌉
,i

if i 6 N⌈ p
m⌉

s
p−m⌊ p−1

m ⌋, j−k⌈ p
m ⌉

⌊
j−1

k⌈ p
m ⌉

⌋
,i−N⌈ p

m ⌉
if N⌈ p

m⌉ < i
.

Then T becomes an algebra with respect to those operations. This algebra is called the tensor algebra of A
and C.
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Let

tr =
kr

∑
j=1

tr, j,1 ⊗·· ·⊗ tr, j,Nr =
r⊕

i=r

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

for every r ∈ {1, . . . ,n}. As the addition of tensor products in T is defined through direct sum,

n⊕
i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni =
n

∑
r=1

tr =
n

∑
i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni . (1)

Similarly, as the multiplication of tensor products in T is defined through tensor multiplication, we have that

ti, j,1 ⊗·· ·⊗ ti, j,Ni =
Ni

∏
l=1

ti, j,l, (2)

when the elements ti, j,l are considered as elements of the direct summand A of T or of the direct summand
C of T .

Suppose that (A, f ,B),(C,g,B) ∈ Ob(S(B)), let T be the tensor algebra of A and C and define a map
hT : T → B as follows:

hT (t) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

h̃T (ti, j,l) (3)

for every element

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

of T , where

h̃T (ti, j) =

{
f (ti, j,l) if ti, j,l ∈ A
g(ti, j,l) if ti, j,l ∈C

.

Let τhT be the topology, induced on T by the map hT , i.e., τhT = {h−1
T (U) : U ∈ τB}, where τB denotes

the topology of B. Then hT is a continuous map in the topology τhT .
Notice that hT (s+ t) = hT (s)+hT (t),hT (st) = hT (s)hT (t), and hT (λ t) = λhT (t) for every s, t ∈ T and

λ ∈ K. Thus, hT is an algebra homomorphism and hT (T ) is closed with respect to the algebraic operations.
Next, let us show that the addition and scalar multiplication are continuous and multiplication is

separately continuous in the topology τhT . For this, let O be an arbitrary neighbourhood of zero in T , t be an
arbitrary element of T , and λ an arbitrary scalar from K. Then hT (t) ∈ B and there exists a neighbourhood
OB of zero in B such that h−1

T (OB)⊆ O. Since the addition and scalar multiplication are continuous in B and
the multiplication is separately continuous in B, there exist neighbourhoods U,V , and W of zero in B such
that U +U,λV,hT (t)W,WhT (t)⊆ OB. Now, h−1

T (U),h−1
T (V ) and h−1

T (W ) are neighbourhoods of zero in T
such that

h−1
T (U)+h−1

T (U)⊆ h−1
T (U +U)⊆ h−1

T (OB)⊆ O,

λh−1
T (V ) = h−1

T (λV )⊆ h−1
T (OB)⊆ O,

th−1
T (W )⊆ h−1

T (hT (t)W )⊆ h−1
T (OB)⊆ O,

and
h−1

T (W )t ⊆ h−1
T (WhT (t))⊆ h−1

T (OB)⊆ O.

Thus, T is a topological algebra.
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Notice that hT (T ) is an ideal of B. Its “sideness” is the same as it is for the dense ideals f (A) and g(C).
If f (A) and g(C) are left ideals of B, then b f (a) ∈ f (A) and bg(c) ∈ g(C) for every a ∈ A,b ∈ B, and c ∈C.
Let

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni ∈ T.

Suppose that ti, j,1 ∈ A and b ∈ B. Then h̃T (ti, j,1) ∈ f (A) and there exists t̂i, j,1 ∈ A such that

bh̃T (ti, j,1) = f (t̂i, j,1) = h̃T (t̂i, j,1).

Similarly, if ti, j,1 ∈C, then there exists t̂i, j,1 ∈C such that bh̃T (ti, j,1) = h̃T (t̂i, j,1). Therefore,

bhT (t) =
n

∑
i=1

ki

∑
j=1

(
h̃T (t̂i, j,1)

Ni

∏
l=2

h̃T (ti, j,l)
)
∈ hT (T ).

Similarly, if f (A) and g(C) are right ideals of B, we find elements t̂i, j,Ni in A or C such that

hT (t)b =
n

∑
i=1

ki

∑
j=1

((Ni−1

∏
l=1

h̃T (ti, j,l)
)

h̃T (t̂i, j,Ni)
)
∈ hT (T ).

Thus, hT (T ) is an ideal of B, which has the same sideness as the ideals f (A) and g(C) had.
Moreover, since f (A)⊂ hT (T ) and f (A) was dense in B, hT (T ) is a dense left (right or two-sided) ideal

of B. With this, we have proved the following result.

Lemma 2.1. Let (A, f ,B),(C,g,B) ∈ Ob(S(B)) and let T be the tensor algebra of A and C. Define the map
hT : T → B as in (3) and equip T with the topology τhT . Then (T,hT ,B) ∈ Ob(S(B)).

Let I be the two-sided ideal of T , generated by the set

{a1 ⊗a2 −a1a2,c1 ⊗ c2 − c1c2 : a1,a2 ∈ A,c1,c2 ∈C}.

Then hT (I) = {θB}, because

hT (a1 ⊗a2 −a1a2) = f (a1) f (a2)− f (a1a2) = θB = g(c1)g(c2)−g(c1c2) = hT (c1 ⊗ c2 − c1c2)

for every a1,a2 ∈ A and c1,c2 ∈C. Let A⊔C = T/I, equipped with the quotient topology τA⊔C (induced by
the topology τhT ). Then (A⊔C,τA⊔C) is a topological algebra.

In algebra, the set A⊔C is called the free product of A and C.
Let κI : T → T/I = A⊔C be the quotient map and define a map h : A⊔C → B by h(κI(t)) = hT (t). Then

h is correctly defined, because hT (I) = {θB}. Moreover, h is a continuous algebra homomorphism, taking
A⊔C to a dense ideal h(A⊔C) = hT (T ) of B. With that, we have proved another result.

Lemma 2.2. Let (A, f ,B),(C,g,B) ∈ Ob(S(B)) and let T be the tensor algebra of A and C. Define the map
hT : T → B as in (3) and equip T with the topology τhT . Let I be the two-sided ideal of T , generated by the
set

{a1 ⊗a2 −a1a2,c1 ⊗ c2 − c1c2 : a1,a2 ∈ A,c1,c2 ∈C}

and A⊔C = T/I be equipped with the quotient topology. Let κI : T → T/I be the quotient map. Then
the triple (A⊔C,h,B), where h(κI(t)) = hT (t) for every t ∈ T and every κI(t) ∈ A⊔C, is an object of the
category S(B).
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3. COPRODUCTS IN THE CATEGORY S(B)

Let us recall from [6] (see Definition in Chapter 5.1, p. 214) that the coproduct of the objects A and B of
a category C is a triple (A⊔B,α,β ), where A⊔B is an object in C and α : A → A⊔B,β : B → A⊔B
are morphisms of the category C such that for every object X in C and every pair of morphisms
f : A → X ,g : B → X of C there exists a unique morphism θ : A⊔B → X of C such that θ ◦α = f and
θ ◦β = g.

Now we will formulate this definition for the category S(B).

Definition 3.1. The coproduct of (A, f ,B),(C,g,B) ∈ Ob(S(B)) is a triple ((A ⊔ C,h,B),α,β ),
where (A ⊔C,h,B) ∈ Ob(S(B)), α ∈ Mor((A, f ,B),(A ⊔C,h,B)),β ∈ Mor((C,g,B),(A ⊔C,h,B)) such
that for every (X , j,B) ∈ Ob(S(B)) and every pair of morphisms γ ∈ Mor((A, f ,B),(X , j,B)) and
δ ∈ Mor((C,g,B),(X , j,B)) there exists a unique morphism θ ∈ Mor((A ⊔C,h,B),(X , j,B)) such that
θ ◦α = γ and θ ◦β = δ

With this, we are ready to describe the coproducts in the category S(B).

Proposition 3.2. For any (A, f ,B),(C,g,B) ∈ Ob(S(B)), their coproduct in S(B) exists and is the triple
((A⊔C,h,B),α,β ), where (A⊔C,h,B) is the object of S(B) described in Lemma 2.2, α : A → A⊔C and
β : C → A⊔C are morphisms defined by α(a) = κI(a),β (c) = κI(c) for all a ∈ A, and c ∈ C, where κI is
the quotient map defined in Lemma 2.2.

Proof. Let T be the tensor algebra of algebras A and C. Let iA : A → T and iC : C → T be the inclusion maps
sending elements of A and B into the direct summands A and C of T , respectively, i.e., iA(a) = a ∈ A ⊂ T
and iC(c) = c ∈ C ⊂ T for every a ∈ A and c ∈ C. Then the maps iA and iC are continuous algebra
homomorphisms. Moreover, the quotient map κI : T → A ⊔C is a continuous algebra homomorphism.
Hence, the maps α = κI ◦ iA and β = κI ◦ iC are also continuous algebra homomorphisms.

Notice that f (a) = hT (a) = hT (iA(a)) and g(c) = hT (c) = hT (iC(c)) for all a ∈ A and c ∈ C. Thus,
f = hT ◦ iA and g = hT ◦ iC. By Lemma 2.2, h◦κI = hT . Take any a ∈ A and c ∈C. Then

(h◦α)(a) = (h◦ (κI ◦ iA))(a) = ((h◦κI)◦ iA)(a) = (hT ◦ iA)(a) = f (a)

and
(h◦β )(c) = (h◦ (κI ◦ iC))(c) = ((h◦κI)◦ iC)(c) = (hT ◦ iC)(c) = g(c).
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Thus, we have demonstrated that α ∈ Mor((A, f ,B),(A⊔C,h,B)) and β ∈ Mor((C,g,B),(A⊔C,h,B)).
Take any (X ,v,B) ∈ Ob(S(B)), any γ ∈ Mor((A, f ,B),(X ,v,B)), and any δ ∈ Mor((C,g,B),(X ,v,B)).

Then v◦ γ = f and v◦δ = g.
Define a map ω : T → X by

ω(t) = ω
( n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

)
:=

n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

Ω(ti, j,l)

for every element

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

of T , where

Ω(ti, j,l) =

{
γ(ti, j,l) if ti, j,l ∈ A
δ (ti, j,l) if ti, j,l ∈C

.

Then ω is an algebra homomorphism, because, by the definition of ω , ω(s + t) = ω(s) + ω(t),
ω(st) = ω(s)ω(t),ω(λ t) = λω(t) for every s, t ∈ T and λ ∈ K. Moreover, ω is continuous, because it
is defined using continuous maps γ and δ and arithmetic operations, which are continuous.

Let θ : A⊔C → X be defined by θ(κI(t)) = ω(t). Then θ is also a continuous algebra homomorphism,
because ω was a continuous algebra homomorphism and κI was an open algebra homomorphism.

Take any element y of A⊔C. Then there exists an element

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni

of T such that y = κI(t). Now, as ν is an algebra homomorphism,

(v◦θ)(y) = v(θ(κI(t))) = v(ω(t)) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

(v◦Ω)(ti, j,l).

Notice that

(v◦Ω)(ti, j,l) =

{
(v◦ γ)(ti, j,l) if ti, j,l ∈ A
(v◦δ )(ti, j,l) if ti, j,l ∈C

=

{
f (ti, j,l) if ti, j,l ∈ A
g(ti, j,l) if ti, j,l ∈C

= h̃T (ti, j,l)

for every i ∈ {1, . . . ,n}, j ∈ {1, . . . ,ki}, and l ∈ {1, . . . ,Ni}. Therefore,

(v◦θ)(y) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

h̃T (ti, j,l) = hT (t) = h(κI(t)) = h(y).

Thus, v◦θ = h. Hence, θ ∈ Mor((A⊔C,h,B),(X ,v,B)).
It is also easy to check that (θ ◦α)(a) = γ(a) for every a ∈ A and that (θ ◦β )(c) = δ (c) for every c ∈C.

Thus, θ ◦α = γ and θ ◦β = δ .
Take any ψ ∈ Mor((A⊔C,h,B),(X , j,B)) such that ψ ◦α = γ and ψ ◦ β = δ . As ψ is an algebra

homomorphism,
ψ(I) = ψ(θA⊔C) = {θX}.

Take any y ∈ A⊔C. Then there exists an element

t =
n⊕

i=1

ki

∑
j=1

ti, j,1 ⊗·· ·⊗ ti, j,Ni
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of T such that y = κI(t). By using first (2) and then (1), we obtain that

ψ(y) =ψ(κI(t)) =ψ
(

κI

( n⊕
i=1

ki

∑
j=1

ti, j,1⊗·· ·⊗ti, j,Ni

))
=ψ

(
κI

( n⊕
i=1

ki

∑
j=1

Ni

∏
l=1

ti, j,l
))

=ψ
(

κI

( n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

ti, j,l
))

.

Using the facts that κI and ψ are algebra homomorphisms and that ti, j,l = σ(ti, j,l), where

σ(ti, j,l) =

{
α(ti, j,l) = ti, j,l if ti, j,l ∈ A
β (ti, j,l) = ti, j,l if ti, j,l ∈C

,

we obtain that

ψ(y) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

ψ(κI(ti, j,l)) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

ψ(ti, j,l + I) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

(ψ(ti, j,l)+ψ(I))

=
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

ψ(σ(ti, j,l)) =
n

∑
i=1

ki

∑
j=1

Ni

∏
l=1

Ω(ti, j,l) = ω(t) = θ(κI(t)) = θ(y).

Therefore, ψ = θ and θ ∈ Mor((A⊔C,h,B),(X ,v,B)) is a unique morphism with the properties θ ◦α = γ
and θ ◦β = δ .

Consequently, (A⊔C,h,B) is the coproduct of (A, f ,B) and (C,g,B).

4. PRODUCTS IN S(B)

Let us recall from [6] (see Definition in Chapter 5.1, p. 217) that the product of the objects A and B of
a category C is a triple (A ⊓ B, p,q), where A ⊓ B is an object in C and p : A ⊓ B → A,q : A ⊓ B → B
are morphisms of the category C such that for every object X in C and every pair of morphisms
f : X → A,g : X → C of C there exists a unique morphism θ : X → A⊓B of C such that p ◦ θ = f and
q◦θ = g.

Now we will formulate this definition for the category S(B).

Definition 4.1. The product of (A, f ,B),(C,g,B) ∈ Ob(S(B)) is a triple ((A ⊓ C,h,B),α,β ), where
(A ⊓ C,h,B) ∈ Ob(S(B)), α ∈ Mor((A ⊓ C,h,B),(A, f ,B)),β ∈ Mor((A ⊓ C,h,B),(C,g,B)) such
that for every (X , j,B) ∈ Ob(S(B)) and every pair of morphisms γ ∈ Mor((X , j,B),(A, f ,B)),
δ ∈ Mor((X , j,B),(C,g,B)) there exists a unique morphism θ ∈ Mor((X , j,B),(A ⊓C,h,B)) such that
α ◦θ = γ and β ◦θ = δ
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Let us remind that, when A and C are topological algebras, then A×C = {(a,c) : a ∈ A,c ∈C}, equipped
with the product topology, is also a topological algebra with respect to the algebraic operations defined by

(a1,c1)+(a2,c2) = (a1 +a2,c1 + c2), λ (a1,c1) = (λa1,λc1), and (a1,c1)(a2,c2) = (a1a2,c1c2)

for all (a1,c1),(a2,c2) ∈ A×C and every λ ∈K.
In the case of the category of modules over a fixed ring, the product of objects A and C was defined to

be A⊓C = A×C and the maps α = prA : A×C → A and β = prC : A×C →C were chosen as projections.
In the category S(B), the conditions α ∈ Mor((A⊓C,h,B),(A, f ,B)) and β ∈ Mor((A⊓C,h,B),(C,g,B))

induce the condition f ◦α = h = g ◦β . Hence, choosing A⊓C = A×C, α =prA, and β =prC, we would
have the condition f (a) = h((a,c)) = g(c), which is not true for all (a,c)∈ A×C, in general. Thus, we have
to limit ourselves to some subset D := {(a,c) ∈ A×C : f (a) = g(c)} of A×C.

The construction of D is similar to the construction of the Whitney sum, known for fibre bundles. The
difference in our case is that, unlike the case of the Whitney sums of fibre bundles, not all elements b = f (a)
of the image f (A) have to have such c ∈C that g(c) = b, because we do not demand that f (A) = g(C).

Fortunately, D is still an algebra and, choosing the subspace topology on D, induced by the
product topology of A ×C, we still obtain a topological algebra and are able to define h : D → B by
h((a,c)) = f (a) = g(c). But now we can not guarantee that h(D) is dense in B. We faced a similar situation
(with a bit more difficult obstacles) in [2], while we were describing the equalizers in the category S(B).

Let us continue with a result similar to Lemma 2 from [2].

Lemma 4.2. Let (A, f ,B),(C,g,B) ∈ Ob(S(B)),

D = {(a,c) ∈ A×C : f (a) = g(c)},

and h : D → B be defined by h((a,c)) = f (a) = g(c) for every (a,c) ∈ D. Consider on A×C the product
topology induced by the topologies of A and C and consider on D the subspace topology τD induced by
the product topology on A ×C. If D̃ is a subalgebra of D, equipped with the subspace topology, such
that h(D̃) is a dense ideal of B, then (D̃,h |D̃,B) ∈ Ob(S(B)), prA |D̃∈ Mor((D̃,h |D̃,B),(A, f ,B)), and
prC|D̃∈ Mor((D̃,h|D̃,B),(C,g,B)).

Proof. By the definition of D̃, conditions (1) and (3) of the Segal topological algebra are fulfilled. It is easy
to see, by the definition of h, that

h|D̃= f ◦prA|D̃= g◦prC|D̃ .

As f ,g, prA, prC are all continuous algebra homomorphisms, prA |D̃, prC |D̃, and h|D̃ are also continuous
algebra homomorphisms. Thus, condition (2) of the Segal topological algebra is fulfilled. Hence,

(D̃,h|D̃,B) ∈ Ob(S(B)).

From the first part of the proof, we also conclude that

prA|D̃∈ Mor((D̃,h|D̃,B),(A, f ,B))

and
prC|D̃∈ Mor((D̃,h|D̃,B),(C,g,B)).

Remark 4.3. When the present paper had been submitted and was waiting for the opinion of the referees,
another paper ([4]) was written, where the situation of products in the category S(B) was studied for an
arbitrary collection of objects in S(B) instead of the product of just two objects. Therefore, several results
of the present paper become as a special case of more general results and will be given here without proofs.

Now we are ready to give a sufficient condition in order to have a product in the category S(B).
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Lemma 4.4. Let (A, f ,B),(C,g,B) ∈ Ob(S(B)) and take D and h as in Lemma 4.2. Then h(D) is an ideal
of B. If B0 = f (A)∩g(C) is dense in B, then there exists a product ((D,h,B), prA|D̃, prC|D̃) of (A, f ,B) and
(C,g,B).

Proof. See the proof of Proposition 1 in [4], pp. 29–31 and take there I = {1,2}, (A1, f1,B) = (A, f ,B), and
(A2, f2,B) = (C,g,B).

Next, we will show that the denseness condition is not only sufficient for the existence of a product but
also necessary.

Lemma 4.5. Let (A, f ,B),(C,g,B)∈ Ob(S(B)). If the product of (A, f ,B) and (C,g,B) exists in the category
S(B), then f (A)∩g(C) is dense in B.

Proof. See the proof of Proposition 2 in [4], pp. 31–32 and take there I = {1,2}, (A1, f1,B) = (A, f ,B), and
(A2, f2,B) = (C,g,B).

From Lemma 4.4 and Lemma 4.5, we will obtain the following result.

Theorem 4.6. Let (A, f ,B),(C,g,B)∈ Ob(S(B)). The product of (A, f ,B) and (C,g,B) exists in the category
S(B) if and only if f (A)∩ g(C) is dense in B. If the product of (A, f ,B) and (C,g,B) exists in the category
S(B), then it is isomorphic to the triple ((D,h,B), prA|D, prC|D), where D = {(a,c) ∈ A×C : f (a) = g(c)},
h : D → B is defined by h((a,c)) = f (a) = g(c) for every (a,c)∈ D and prA : A×C → A and prC : A×C →C
are the projections of A×C to A and C, respectively.

Proof. Suppose that f (A)∩ g(C) is dense in B. Then the product of (A, f ,B) and (C,g,B) exists in the
category S(B), by Lemma 4.4. Moreover, Lemma 4.4 also tells us that the product of (A, f ,B) and (C,g,B)
is of the form ((D,h,B), prA|D, prC|D), described in the text of Theorem 4.6.

Suppose that the product ((A ⊓C,h,B),α,β ) of (A, f ,B) and (C,g,B) exists in the category S(B).
Then f (A) ∩ g(C) is dense in B, by Lemma 4.5. Now, by Lemma 4.4, we know that the triple
((D,h,B), prA |D, prC |D), described above, is also the product of (A, f ,B) and (C,g,B). By Proposition
5.7 in [6], p. 218, we know that any two products of two fixed objects of a category are isomorphic. Hence,
the product ((A⊓C,h,B),α,β ) of (A, f ,B) and (C,g,B) is isomorphic to ((D,h,B), prA|D, prC|D).

With Theorem 4.6, we have transferred the problem of the existence of products in the category S(B) to
the problem of denseness of the intersection of two dense ideals (of the same sideness).

Since (B0,1B0 ,B)∈ S(B) for every dense ideal B0 of B, in order to ensure that all products in the category
S(B) exist, we have to ensure that the intersection B0 ∩B1 is dense in B for every pair of dense ideals B0
and B1 of B. Although we are at the moment unable to describe the class of all topological algebras where
the intersection of any two dense ideals (of the same sideness) is dense in the whole algebra, we can have at
least a criterion for the existence of products in the category S(B).

Corollary 4.7. Let B be a topological algebra. Then all coproducts in the category S(B) always exist.
Moreover, all products in the category S(B) exist if and only if B has the property
(*) the intersection of any two dense ideals (of the same sideness) of B is dense in B.

5. OPEN QUESTIONS

(1) Is the intersection of two dense ideals (of the same sideness) of a topological algebra always dense?
(2) Describe all topological algebras, where the intersection of any two dense ideals (of the same sideness)

is again a dense ideal (of the same sideness) of the same topological algebra.
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6. CONCLUSIONS

In the present paper, we showed that all coproducts of elements of the category S(B) of Segal topological
algebras exist for every topological algebra B. We also found a necessary and sufficient condition for a
topological algebra B under which all products of elements of the category S(B) exist.
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Korrutised ja kokorrutised Segali topoloogiliste algebrate kategoorias S(B)

Mart Abel

Olgu B topoloogiline algebra. Käesolevas töös on näidatud, et Segali topoloogiliste algebrate kategoorias
S(B) leiduvad kõik kokorrutised. Lisaks on topoloogilise algebra B jaoks leitud tarvilikud ja piisavad
tingimused selleks, et ka kõik korrutised kategoorias S(B) eksisteeriksid.


