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Abstract. Let B be a topological algebra and S(B) the category of Segal topological algebras. In the present paper we show that
all coproducts of two objects of the category S(B) always exist. We also find necesssary and sufficient conditions under which the
products of two objects of the category S(B) exist.

Key words: Segal topological algebra, category, product, coproduct.

1. INTRODUCTION

The study of Segal topological algebras started in [1]. It was followed by [2], where the category S(B)
of Segal topological algebras was represented as triples (A, f,B) where B was fixed. Further study of the
category S(B) was carried out in [3].

The present paper deals with the question of the existence of products and coproducts of objects in the
category S(B). While the coproducts exist always and have a form similar to the form of coproducts in the
category of algebras, the products might or might not exist and have a bit different description, similar to
the description of a Whitney sum known in the theory of fibre spaces.

Let us start by recalling the necessary definitions from [1] and [2].

A topological algebra is a topological linear space over the field K (where K stands for either R or C),
in which there is defined a separately continuous associative multiplication.

A topological algebra (A, 74) is a left (right or two-sided) Segal topological algebra in a topological
algebra (B, 7g) via an algebra homomorphism f : A — B if
(1) clp(f(A)) = B
(2) f is continuous;

(3) f(A) is a left (respectively, right or two-sided) ideal of B.
Notice that condition (2) is equivalent to the following condition:

2V 2{f'(U):U € w},
used in [1]. In what follows, we will denote a Segal topological algebra shortly by a triple (A, f, B).
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From now on, we will fix a topological algebra (B, tg), which we will not change for this paper. The
set Ob(S(B)) of objects of the category S(B) will consist of all Segal topological algebras in the same
topological algebra B, i.e., all Segal algebras in the form of triples (A, f,B), (C,g,B), ...

The set Mor((A, f,B),(C,g,B)) of morphisms between Segal topological algebras (A, f,B) and (C, g, B)
will consist of all continuous algebra homomorphisms o : A — C with the property g(o(a)) = f(a) for
everya € A

In [2], it was shown that S(B) is really a category, but not an additive category. In what follows, we will
denote by 14 : A — A the identity map on A for every algebra A, i.e., 14(a) = a for every a € A. It is easy to
see that if By is a dense left (right or two-sided) ideal of B, then (B, 15,,B) € Ob(S(B)).

For conciseness of the text, we will write everywhere just “ideal” instead of “left (right or two-sided)
ideal”. In what follows, every claim about “ideal” holds in all three cases. One just has to fix the sideness
of all ideals and then to continue with the same sideness throughout the paper.

2. FREE PRODUCT OF TWO OBJECTS OF THE CATEGORY S(B)

In algebra it is known that, for any finite collection Vi,...,V,, of linear spaces, their tensor product
Vi®---®V, is a linear space and consists of all finite sums of the form

k
Vi@ QVjn,
Jj=1

where k € N is finite and v; ; € V; forevery i € {1,...,n}.
It is also known in algebra that, for any collection (A;);cn of linear spaces, their direct sum

Da,

neN

consists of all tuples (a;);cn With a; € A; for every i € N and a; = 6y, for all but finitely many i € N. Hence,
we can write a general element (A;);en 7 (64, )ien of the direct sum of algebras (A;);cy in the form

k
(ai)ien =P
=1
for some k € Z* = {1,2,...}, where there exist ji,..., jx € Nwith I < j; < j, < ji such that

by ifi=j; forsomel e {l1,...,k}
a; = .
04,, otherways

For simplicity, let us denote the element (8y, );cy by

1
@bla
=1
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where b; = 04,. By doing it, we can write every element of the direct sum in the form
k
Do
I=1

for some k € Z™", some ji,..., jr € Nwith 1 < j; < jo < ji, and some b, €Aj,br€Aj,....brEA;.
Next, we follow the ideas of [5], p. 9, about the free product of modules over a commutative unital
ring. In our case, we will apply them to algebras and give the formulas for algebraic operations for the
general element of the free product of two algebras over the field K.
Let A and C be algebras, which are made disjoint by setting a = (a, 1) and ¢ = (¢, 2) for every a € A and
¢ € Cif ANC # 0 originally. Consider the set

T=ADCPARAPARCOCRADCRCDARARAD....
By the aforementioned formulas, we can write every element of 7 in the form
t_@ztul@ "D jN;
i=1Jj=

for some n,ki,... ky,Ni,...,N, € Z" and for some #; ;; € AUC.
For every

m [
t‘@zfuJ@ Q1 jN;, S Z@Zsi,jJ@“-@Si,j,M,
i=1Jj= i=1j=1

and A € K, define the operations on T as follows:

n+m ¢qp
t+s=P Y rpj1®@ @1k,
p=1Jj=1
where
N, ifp<n k, if p<n tpji ifp<n
Kp: M. if ) qp: . ) rp,j,i: )
p,ifn<p I, ifn<p Sp—nji ifn<p
n k;
M:EBZMZ‘,]'J@“-@W,N”
i=1Jj=1
and
m KT | 21|
ts—@ Z qp,j1 @ ®CIP]N’ Lle
where

t[£‘| [j-‘i 1fi<N(ﬂ
"V e )

if Nppy <i
Jion 2]

il

p_mk J] k( ]\»ﬁﬂ}

m

Then T becomes an algebra with respect to those operations. This algebra is called the tensor algebra of A
and C.
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Let
tr—ztrjl® ®ter_@Ztljl® ®tl7JN
Jj= i=r j=1
for every r € {1,...,n}. As the addition of tensor products in T is defined through direct sum,

@2[111(}9 ®tl]N—Ztr Zztl]1® ®tl]N (1)

i=1Jj= i=1j=

Similarly, as the multiplication of tensor products in 7 is defined through tensor multiplication, we have that

Ni
tija @@t jn = [t 2)
=1

when the elements #; ; ; are considered as elements of the direct summand A of T or of the direct summand
Cof T.

Suppose that (A, f,B),(C,g,B) € Ob(S(B)), let T be the tensor algebra of A and C and define a map
hr : T — B as follows:

hr(t) = 2": . hr (ti j1) (3)

for every element

n k,‘
t:@Ztm] Q- Qi jN,

i=1j=1
of T, where

~ t; i ift,; ;€A
hT(ti,j) — f( 17]71) - i,j,l '
g(tiji) iftij€C

Let 7, be the topology, induced on T by the map hr, i.e., T, = {h;' (U) : U € 15}, where 7z denotes
the topology of B. Then A7 is a continuous map in the topology 7.

Notice that hy(s+1t) = hy(s) +hr(t),hr(st) = hy(s)hr(t), and hy (At) = Ahyr(t) for every s,t € T and
A € K. Thus, hr is an algebra homomorphism and A7 (7T') is closed with respect to the algebraic operations.

Next, let us show that the addition and scalar multiplication are continuous and multiplication is
separately continuous in the topology 7. For this, let O be an arbitrary neighbourhood of zero in 7', ¢ be an
arbitrary element of 7', and A an arbitrary scalar from K. Then &7 (¢) € B and there exists a neighbourhood
Og of zero in B such that h}l (Op) C 0. Since the addition and scalar multiplication are continuous in B and
the multiplication is separately continuous in B, there exist neighbourhoods U,V, and W of zero in B such
that U + U, AV, hy (t)W,Why(t) C Op. Now, hy'(U),h;'(V) and ' (W) are neighbourhoods of zero in T
such that

h;l(U)+h;1(U) 2(U+U) Ch'(0p) CO,

Ahy (V) =h ' (AV) C hy' (0) C O,
T1<W)£hT< ()W) € hy'(05) C O,

and
hy! (W)t C hy'(Wh (1)) € hy' (O) € O.

Thus, T is a topological algebra.
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Notice that 7 (T) is an ideal of B. Its “sideness” is the same as it is for the dense ideals f(A) and g(C).
If f(A) and g(C) are left ideals of B, then bf(a) € f(A) and bg(c) € g(C) foreverya € A,b € B, and c € C.

Let
n k

=P . lfi,Jyl ®---@tijN €T
i=1j=

Suppose that 7; j | € A and b € B. Then hr (ti,j1) € f(A) and there exists #; j,; € A such that

bhr(ti j1) = f(Gij1) = hr(fi 1)

Similarly, if #; ;1 € C, then there exists 7; j | € C such that bh~7(t,-7j’1) = h}(fi,jJ ). Therefore,

Ni

n ki
bhr(t) = Y Y (b (i) [ T (10)) € hr(T).
i=1j=1 =2

Similarly, if f(A) and g(C) are right ideals of B, we find elements 7; ; v, in A or C such that

ki Ni—1

hr(t)h =Y (( I ,-7,));1}(@-, j,N,.)) e hy (T).

i=1j=1""1=1

Thus, h7(T) is an ideal of B, which has the same sideness as the ideals f(A) and g(C) had.
Moreover, since f(A) C hr(T) and f(A) was dense in B, hr(T) is a dense left (right or two-sided) ideal
of B. With this, we have proved the following result.

Lemma 2.1. Let (A, f,B),(C,g,B) € Ob(S(B)) and let T be the tensor algebra of A and C. Define the map
hy : T — Bas in (3) and equip T with the topology t,. Then (T ,hr,B) € Ob(S(B)).

Let I be the two-sided ideal of T, generated by the set
{a1 ®ay —ajaz,c1 ®cy—ciey :ay,a; € A cy,c0 €C}.
Then hy(I) = {6}, because

hr (a1 ®az —a1az) = f(a1)f(a2) — f(araz) = 0 = g(c1)g(c2) — glcica) = hr(c1 @ca—cic2)

for every aj,a; € A and c¢j,c; € C. Let ALIC = T/I, equipped with the quotient topology T4 (induced by
the topology 75,). Then (AUC,Ta ic) is a topological algebra.

In algebra, the set A LIC is called the free product of A and C.

Letx;: T — T /I = AUC be the quotient map and define amap 2 : ALIC — B by h(x;(t)) = hr(t). Then
h is correctly defined, because hr(I) = {6z}. Moreover, A is a continuous algebra homomorphism, taking
AUC to a dense ideal h(AUC) = hy(T) of B. With that, we have proved another result.

Lemma 2.2. Let (A, f,B),(C,g,B) € Ob(S(B)) and let T be the tensor algebra of A and C. Define the map
hr : T — B as in (3) and equip T with the topology Ty,. Let I be the two-sided ideal of T, generated by the
set

{ai®@ay —ayaz,c1 @ cy—cicp 1 ar,ap € A,cr,¢2 € C}

and AUC = T /I be equipped with the quotient topology. Let k;: T — T /I be the quotient map. Then
the triple (AUC, h,B), where h(x;(t)) = hy(t) for every t € T and every ki(t) € AUC, is an object of the
category S(B).
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3. COPRODUCTS IN THE CATEGORY S(B)

Let us recall from [6] (see Definition in Chapter 5.1, p. 214) that the coproduct of the objects A and B of
a category % is a triple (AUB, a, ), where ALIB is an object in 4 and ¢« :A - AUB,B: B — AUB
are morphisms of the category % such that for every object X in % and every pair of morphisms
f:A—X,g:B— X of € there exists a unique morphism 6 : ALIB — X of ¥ such that 6 o = f and
bof =g.

Now we will formulate this definition for the category S(B).

Definition 3.1. The coproduct of (A,f,B),(C,g,B) € Ob(S(B)) is a triple ((AUC,h,B),a,p),
where (AUC,h,B) € Ob(S(B)), o € Mor((A, f,B),(AUC,h,B)),B € Mor((C,g,B),(AUC,h,B)) such
that for every (X,j,B) € Ob(S(B)) and every pair of morphisms y € Mor((A, f,B),(X,j,B)) and
0 € Mor((C,g,B),(X,j,B)) there exists a unique morphism 6 € Mor((AUC,h,B),(X,j,B)) such that
Poa=yandOof3 =0

With this, we are ready to describe the coproducts in the category S(B).

Proposition 3.2. For any (A, f,B),(C,g,B) € Ob(S(B)), their coproduct in S(B) exists and is the triple
((AUC,h,B), ., B), where (ALUC,h,B) is the object of S(B) described in Lemma 2.2, a: A — ALC and
B : C — AUC are morphisms defined by a(a) = xj(a),B(c) = xi(c) for all a € A, and ¢ € C, where K is
the quotient map defined in Lemma 2.2.

Proof. Let T be the tensor algebra of algebras A and C. Letiy : A — T and ic : C — T be the inclusion maps
sending elements of A and B into the direct summands A and C of T, respectively, i.e., ia(a) =a €A CT
and ic(c) =c € C C T for every a € A and ¢ € C. Then the maps iy and ic are continuous algebra
homomorphisms. Moreover, the quotient map x; : T — ALUC is a continuous algebra homomorphism.
Hence, the maps o = kj 0iy and B = kj o ic are also continuous algebra homomorphisms.

Notice that f(a) = hr(a) = hr(ia(a)) and g(c) = hr(c) = hr(ic(c)) for all @ € A and ¢ € C. Thus,
f=hroiyand g = hyoic. By Lemma 2.2, ho k; = hy. Take any a € A and ¢ € C. Then

(hoa)(a) = (ho(Krois))(a) = ((hokr)ois)(a) = (hr 0is)(a) = f(a)

and
(hoB)(c) = (ho(Kroic))(c) = ((hoky)oic)(c) = (hroic)(c) = g(c).
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Thus, we have demonstrated that o € Mor((A, f,B),(AUC,h,B)) and € Mor((C,g,B),(ALUC,h,B)).
Take any (X,v,B) € Ob(S(B)), any y € Mor((A, f,B),(X,v,B)), and any 8 € Mor((C,g,B),(X,v,B)).
Thenvoy= fandvod =g.
Defineamap  : 7 — X by

(D(EBZIW,N@ ®tl}N>

i=1Jj= i

ki

z

M:

.Qtljl
1

1j=1

-
Il

for every element
n o k;

IZ@ZE,J‘,I Q- QLN
i=1]

i=1
of T, where
ti ift;; ;€A
Q(ti,j,l) = ’}/( l'/j’l) ) i,J,l ]
O(tij1) ift;€C

Then @ is an algebra homomorphism, because, by the definition of ®, @(s+1) = @(s) + o(r),
o(st) = o(s)o(t),0(At) = Lo(t) for every s,t € T and A € K. Moreover, @ is continuous, because it
is defined using continuous maps y and & and arithmetic operations, which are continuous.

Let 0 : ALUC — X be defined by 6(k;(¢)) = o(¢). Then 6 is also a continuous algebra homomorphism,
because @ was a continuous algebra homomorphism and x; was an open algebra homomorphism.

Take any element y of ALIC. Then there exists an element

n

ki
Z@Zti,j,1®---®ti,jw,-

i=1Jj=1
of T such that y = k;(¢). Now, as Vv is an algebra homomorphism,

ki

3

M:

(vo8)(y) =v(0(ki(1))) = v( (voQ)(tij1)-

N
Il
—

1j=1

Notice that

(voR)(tij1) = {@OW%J) ifhij €4 _ {f (ija) Wt €d

= It
(vod)(tijy) iftiju€C | gltijy) iftij€C )

forevery i € {1,...,n},j€{1,...,k},and l € {1,...,N;}. Therefore,

(v00)() = Y. Y. [ [ t05) = hr(6) = h(xi(0)) = ).

Thus, vo 8 = h. Hence, 6 € Mor((AUC,h,B),(X,v,B)).

It is also easy to check that (6 o &¢)(a) = y(a) for every a € A and that (6 o 8)(c) = (c) for every ¢ € C.
Thus, boa=7yand Oof3 = 6.

Take any y € Mor((AUC,h,B),(X,j,B)) such that yoa =y and yo 3 = 5. As y is an algebra
homomorphism,

~—

w(I) = y(6auc) = {6x}-
Take any y € ALIC. Then there exists an element

t—@Zn,l@ @1,

i=1Jj=
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of T such that y = x;(¢). By using first (2) and then (1), we obtain that

) =ws0) = (s (@ L o 0)) ~w(w(D L [Trr)) - w(n(E

i=1j=11=1 i=1j=1

ki

Z

1)),

1

-
Il

Using the facts that k7 and y are algebra homomorphisms and that #; j; = o(t; j;), where

(1) = o(tiji) =tijo  iftij €A
" Bliijo) =t iftijieC’

we obtain that

kel
Z
kel
Z

Wt +1) = ZZH y(t0)+v(D)

i=1j=11=

vy = v(xi(ti 1))

-
i
.M=

Il
_
~
I
-
-
Il
_
Il
_
~
Il
_
-
Il
_

ko
=
z
=

I
1=
®
—
s
~
~—
|
e
—
~
~—

v(o(tij1)) =0(ki(1)) = 0(y).

I
-

Il
_
~
I
-
-
Il
—
Il
—
~
Il
—
-
Il
_

Therefore, y = 0 and 6 € Mor((AUC,h,B),(X,v,B)) is a unique morphism with the properties 6 o @ = y
and o ff = 6.
Consequently, (ALC,h,B) is the coproduct of (A, f,B) and (C,g,B). O

4. PRODUCTS IN S(B)

Let us recall from [6] (see Definition in Chapter 5.1, p. 217) that the product of the objects A and B of
a category ¢ is a triple (AMB,p,q), where ATIB is an object in ¢ and p: ATMB — A,q: AMNB — B
are morphisms of the category % such that for every object X in % and every pair of morphisms
f:X = A ,g:X — C of € there exists a unique morphism 6 : X — AT B of € such that po8 = f and
qob=g.
Now we will formulate this definition for the category S(B).

Definition 4.1. The product of (A,f,B),(C,g,B) € Ob(S(B)) is a triple ((AT1C,h,B),c,B), where
(AN C,h,B) € Ob(S(B)), a € Mor((AMC,h,B),(A,f,B)),B € Mor((ANC,h,B),(C,g,B)) such
that for every (X,j,B) € Ob(S(B)) and every pair of morphisms y € Mor((X,j,B),(A,f,B)),
0 € Mor((X,j,B),(C,g,B)) there exists a unique morphism 6 € Mor((X,j,B),(ATC,h,B)) such that
ooO=vyand fo6 =295
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Let us remind that, when A and C are topological algebras, then A x C = {(a,c) : a € A,c € C}, equipped
with the product topology, is also a topological algebra with respect to the algebraic operations defined by

(ar,c1)+ (az,c2) = (a1 +az,c1 +¢2), Alar,c1) = (Aai,Acy), and (ay,c1)(az,c2) = (ajaz,cic2)

for all (aj,c1),(az,c2) € AxC and every A € K.

In the case of the category of modules over a fixed ring, the product of objects A and C was defined to
be ATIC = A x C and the maps o = pry : A X C — A and B = pr¢ : A X C — C were chosen as projections.

In the category S(B), the conditions & € Mor((AMC,h,B), (A, f,B)) and B € Mor((ANC,h,B),(C,g,B))
induce the condition foa =h = go 3. Hence, choosing AMTC = A x C, a =pry, and § =pr¢, we would
have the condition f(a) = h((a,c)) = g(c), which is not true for all (a,c) € A x C, in general. Thus, we have
to limit ourselves to some subset D := {(a,c) €A X C: f(a) =g(c)} of A X C.

The construction of D is similar to the construction of the Whitney sum, known for fibre bundles. The
difference in our case is that, unlike the case of the Whitney sums of fibre bundles, not all elements b = f(a)
of the image f(A) have to have such ¢ € C that g(c¢) = b, because we do not demand that f(A) = g(C).

Fortunately, D is still an algebra and, choosing the subspace topology on D, induced by the
product topology of A x C, we still obtain a topological algebra and are able to define 4 : D — B by
h((a,c)) = f(a) = g(c). But now we can not guarantee that (D) is dense in B. We faced a similar situation
(with a bit more difficult obstacles) in [2], while we were describing the equalizers in the category S(B).

Let us continue with a result similar to Lemma 2 from [2].

Lemma 4.2. Let (A, f,B),(C,g,B) € Ob(S(B)),

D={(a,c) cAxC: f(a) =g(c)},

and h : D — B be defined by h((a,c)) = f(a) = g(c) for every (a,c) € D. Consider on A x C the product
topology induced by the topologies of A and C and consider on D the subspace topology Tp induced by
the product topology on A x C. If D is a subalgebra of D, equipped with the subspace topology, such
that h(D) is a dense ideal of B, then (D,h|s,B) € Ob(S(B)), pra|s€ Mor((D,h|s,B),(A,f,B)), and
prC‘DE MOI’((D,h‘D,B)7 (Cang))'

Proof. By the definition of D, conditions (1) and (3) of the Segal topological algebra are fulfilled. It is easy
to see, by the definition of 4, that

hlp=fopralp=goprclp -
As f,g, pra, prc are all continuous algebra homomorphisms, pra|p, prels, and ks are also continuous
algebra homomorphisms. Thus, condition (2) of the Segal topological algebra is fulfilled. Hence,

(D, h|5,B) € Ob(S(B)).
From the first part of the proof, we also conclude that
pry|p€ Mor((D,h|p,B), (A, f,B))

and
pre|5€ Mor((D,h|,B),(C,g,B)). o

Remark 4.3. When the present paper had been submitted and was waiting for the opinion of the referees,
another paper ([4]) was written, where the situation of products in the category S(B) was studied for an
arbitrary collection of objects in S(B) instead of the product of just two objects. Therefore, several results
of the present paper become as a special case of more general results and will be given here without proofs.

Now we are ready to give a sufficient condition in order to have a product in the category S(B).
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Lemma 4.4. Let (A, f,B),(C,g,B) € Ob(S(B)) and take D and h as in Lemma 4.2. Then h(D) is an ideal
of B. If By = f(A) N g(C) is dense in B, then there exists a product ((D,h,B), ptalp, prclp) of (A, f,B) and
(C.g:B).

Proof. See the proof of Proposition 1 in [4], pp. 29-31 and take there I = {1,2}, (A, f1,B) = (A, f,B), and
(AQvflvB) :(C,g,B). ]

Next, we will show that the denseness condition is not only sufficient for the existence of a product but
also necessary.

Lemma4.5. Let (A, f,B),(C,g,B) € Ob(S(B)). If the product of (A, f,B) and (C,g, B) exists in the category
S(B), then f(A)Ng(C) is dense in B.

Proof. See the proof of Proposition 2 in [4], pp. 31-32 and take there I = {1,2}, (A, f1,B) = (A, f,B), and
(AvalvB) :(Cung)‘ ]

From Lemma 4.4 and Lemma 4.5, we will obtain the following result.

Theorem 4.6. Let (A, f,B),(C,g,B) € Ob(S(B)). The product of (A, f,B) and (C, g, B) exists in the category
S(B) if and only if f(A) Ng(C) is dense in B. If the product of (A, f,B) and (C,g,B) exists in the category
S(B), then it is isomorphic to the triple ((D,h,B), pra|p, prc|p), where D = {(a,c) e AxC: f(a) = g(c)},
h:D — B is defined by h((a,c)) = f(a) = g(c) for every (a,c) € Dand pry :AxC —Aandpr¢c :AxC—C
are the projections of A X C to A and C, respectively.

Proof. Suppose that f(A) N g(C) is dense in B. Then the product of (A, f,B) and (C,g,B) exists in the
category S(B), by Lemma 4.4. Moreover, Lemma 4.4 also tells us that the product of (A, f,B) and (C, g, B)
is of the form ((D,h,B), pra|p, prc|p), described in the text of Theorem 4.6.

Suppose that the product ((AMC,h,B),a,B) of (A, f,B) and (C,g,B) exists in the category S(B).
Then f(A) Ng(C) is dense in B, by Lemma 4.5. Now, by Lemma 4.4, we know that the triple
((D,h,B), pra|p, prc|p), described above, is also the product of (A, f,B) and (C,g,B). By Proposition
5.7 in [6], p. 218, we know that any two products of two fixed objects of a category are isomorphic. Hence,
the product ((ANC,h,B),a,B) of (A, f,B) and (C, g, B) is isomorphic to ((D,h,B), pra|p, prc|p)- O

With Theorem 4.6, we have transferred the problem of the existence of products in the category S(B) to
the problem of denseness of the intersection of two dense ideals (of the same sideness).

Since (By, 15,,B) € S(B) for every dense ideal By of B, in order to ensure that all products in the category
S(B) exist, we have to ensure that the intersection By N Bj is dense in B for every pair of dense ideals B
and B of B. Although we are at the moment unable to describe the class of all topological algebras where
the intersection of any two dense ideals (of the same sideness) is dense in the whole algebra, we can have at
least a criterion for the existence of products in the category S(B).

Corollary 4.7. Let B be a topological algebra. Then all coproducts in the category S(B) always exist.
Moreover, all products in the category S(B) exist if and only if B has the property
(*) the intersection of any two dense ideals (of the same sideness) of B is dense in B.

5. OPEN QUESTIONS

(1) Is the intersection of two dense ideals (of the same sideness) of a topological algebra always dense?
(2) Describe all topological algebras, where the intersection of any two dense ideals (of the same sideness)
is again a dense ideal (of the same sideness) of the same topological algebra.
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6. CONCLUSIONS

In the present paper, we showed that all coproducts of elements of the category S(B) of Segal topological
algebras exist for every topological algebra B. We also found a necessary and sufficient condition for a
topological algebra B under which all products of elements of the category S(B) exist.
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Korrutised ja kokorrutised Segali topoloogiliste algebrate kategoorias S(B)
Mart Abel
Olgu B topoloogiline algebra. Kiesolevas t66s on ndidatud, et Segali topoloogiliste algebrate kategoorias

S(B) leiduvad koik kokorrutised. Lisaks on topoloogilise algebra B jaoks leitud tarvilikud ja piisavad
tingimused selleks, et ka kdik korrutised kategoorias S(B) eksisteeriksid.



