Revealing the community structure exhibited by real networks is a fundamental phase towards a comprehensive understanding of complex systems beyond the local organization of their components. Community detection techniques help in providing insights into understanding the local organization of the components of networks. We identified and investigated the overlapping community structure of an interesting and unique case of study: the Estonian network of payments. In order to perform the study, we used the Clique Percolation Method and explored statistical distribution functions of the communities, where in most cases we found scale-free properties. In this network the nodes represent Estonian companies and the links represent payments made between the companies. Our study adds to the literature of complex networks by presenting the first overlapping community detection analysis of a country’s network of payments.
1. Newman, M. E. J. Networks: An introduction. Oxford University Press, 2010.
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
2. Palla, G., Derényi, I., Farkas, I., and Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435, 814–818.
https://doi.org/10.1038/nature03607
3. Derényi, I., Palla, G., and Vicsek, T. Clique percolation in random networks. Phys. Rev. Lett., 2005, 94(16), 160202.
https://doi.org/10.1103/PhysRevLett.94.160202
4. König, M. D. and Battiston, S. From graph theory to models of economic networks, a tutorial. In Networks, Topology and Dynamics (Naimzada, A. K., Stefani, S., and Torriero, A., eds), Lecture Notes in Econom. and Math. Systems, 2009, 613, 23–63.
5. Souma, W., Fujiwara, Y., and Aoyama, H. Heterogeneous economic networks. In The Complex Networks of Economic Interactions (Namatame, A., Kaizouji, T., and Aruka, Y., eds), Lecture Notes in Econom. and Math. Systems, 2006, 567, 79–92.
https://doi.org/10.1007/3-540-28727-2_5
6. Battiston, S., Rodrigues, J. F., and Zeytinoglu, H. The network of inter-regional direct investment stocks across Europe. Advs. Complex Syst., 2007, 10(1), 29–51.
https://doi.org/10.1142/S0219525907000933
7. Glattfelder, J. B. and Battiston, S. Backbone of complex networks of corporations: the flow of control. Phys. Rev. E., 2009, 80(3).
https://doi.org/10.1103/PhysRevE.80.036104
8. Nakano, T. and White, D. Network structures in industrial pricing: the effect of emergent roles in Tokyo supplier-chain hierarchies. Struct. and Dyn., 2007, 2(3), 130–154.
9. Reyes, J., Schiavo, S., and Fagiolo, G. Assessing the evolution of international economic integration using random-walk betweenness centrality: the cases of East Asia and Latin America. Advs. Complex Syst., 2007, 11(5), 685–702.
https://doi.org/10.1142/S0219525908001945
10. Lublóy, A. Topology of the Hungarian large-value transfer system. Magyar Nemzeti Bank (Central Bank of Hungary) MNB Occasional Papers, 2006, 57.
11. Inaoka, H., Nimoniya, T., Taniguchi, K., Shimizu, T., and Takayasu, H. Fractal network derived from banking transactions – an analysis of network structures formed by financial institutions. Bank of Japan Working Papers, 2004.
12. Soramäki, K., Bech, M. L., Arnold, J., Glass, R. J., and Beyeler, W. E. The topology of interbank payment flows. Physica A, 2007, 379(1), 317–333.
https://doi.org/10.1016/j.physa.2006.11.093
13. Boss, M., Helsinger, H., Summer, M., and Thurner, S. The network topology of the interbank market. Quant. Finance, 2004, 4(6), 677–684.
https://doi.org/10.1080/14697680400020325
14. Iori, G. and Jafarey, S. Criticality in a model of banking crisis. Physica A, 2001, 299(1), 205–212.
https://doi.org/10.1016/S0378-4371(01)00297-7
15. Iori, G., De Masi, G., Precup, O. V., Gabbi, G., and Caldarelli, G. A network analysis of the Italian overnight money market. J. Econ. Dyn. Control., 2007, 32(1), 259–278.
https://doi.org/10.1016/j.jedc.2007.01.032
16. Vitali, S. and Battiston, B. The community structure of the global corporate network. PLoS ONE, 2014, 9(8), 0104655.
https://doi.org/10.1371/journal.pone.0104655
17. Fenn, D., Porter, M., McDonald, M., Williams, S., Johnson, N., et al. Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisis. Chaos, 2009, 19(3), 3184538.
https://doi.org/10.1063/1.3184538
18. Piccardi, C., Calatroni, L., and Bertoni, F. Communities in Italian corporate networks. Physica A, 2010, 389(22), 5247–5258.
https://doi.org/10.1016/j.physa.2010.06.038
19. Bóta, A. and Kresz, M. A high resolution clique-based overlapping community detection algorithm for small-world networks. Informatica, 2015, 39(2), 177–187.
20. Traud, A. L., Mucha, J. P., and Porter, M. A. Social structure of Facebook networks. Physica A, 2012, 391(16), 4165–4180.
https://doi.org/10.1016/j.physa.2011.12.021
21. González, M. C., Herrmann, H. J., Kertész, J., and Vicsek, T. Community structure and ethnic preferences in school friendship networks. Physica A, 2007, 379(1), 307–316.
https://doi.org/10.1016/j.physa.2007.01.002
22. Palla, G., Barabási, A. L., and Vicsek, T. Quantifying social group evolution. Nature, 2007, 446(7136), 664–667.
https://doi.org/10.1038/nature05670
23. Pollner, P., Palla, G., and Vicsek, T. Preferential attachment of communities: the same principle, but a higher level. Europhys. Lett., 2006, 73(3), 478–484.
https://doi.org/10.1209/epl/i2005-10414-6
24. Lewis, A. C. F., Jones, N. S., Porter, M. A., and Deane, C. M. The function of communities in protein interaction networks at multiple scales. BMC Syst. Biol., 2010, 4, 100.
https://doi.org/10.1186/1752-0509-4-100
25. Guimerá, R. and Amaral, N. Functional cartography of complex metabolic networks. Nature, 2005, 433, 895–900.
https://doi.org/10.1038/nature03288
26. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A. L. Hierarchical organization of modularity in metabolic networks. Science, 2002, 297(5586), 1551–1555.
https://doi.org/10.1126/science.1073374
27. Dourisboure, Y., Geraci, F., and Pellegrini, M. Extraction and classification of dense communities in the web. In Proceedings of the 16th International Conference on the World Wide Web, 2007, 1, 461–470.
https://doi.org/10.1145/1242572.1242635
28. Newman, M. E. J. Detecting community structure in networks. Eur. Phys. J. B, 2004, 38(2), 321–330.
https://doi.org/10.1140/epjb/e2004-00124-y
29. Yang, Z., Algesheimer, R., and Tessone, C. J. A comparative analysis of community detection algorithms on artificial networks. Sci. Rep., 2016, 6, 30750.
https://doi.org/10.1038/srep30750
30. Hopcroft, J., Khan, O., Kulis, B., and Selman, B. Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. USA, 2004, 110, 5249–5253.
https://doi.org/10.1073/pnas.0307750100
31. Scott, J. Social Network Analysis: A Handbook. Sage Publications, UK, 2000.
32. Gavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 6868, 141–147.
https://doi.org/10.1038/415141a
33. Devi, J. C. and Poovammal, E. An analysis of overlapping community detection algorithms in social networks. Proc. Comp. Sci., 2016, 89, 349–358.
https://doi.org/10.1016/j.procs.2016.06.082
34. Xie, J., Kelley, S., and Boleslaw, K. S. Overlapping community detection in networks: the-state-of-the-art and comparative study. ACM Comput. Surv., 2013, 45(4), Art. 43, 1–35.
35. Ding, Z., Zhang, X., Sun, D., and Luo, B. Overlapping community detection based on network decomposition. Sci. Rep., 2016, 6, 24115.
https://doi.org/10.1038/srep24115
36. Everett, M. G. and Borgatti, S. P. Analyzing clique overlap. Connections, 1998, 21(1), 49–61.
37. Shen, H. W. Community Structure of Complex Networks. Springer Science & Business Media, 2013.
https://doi.org/10.1007/978-3-642-31821-4
38. Newman, M. E. J. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 2004, 69, 066133.
https://doi.org/10.1103/PhysRevE.69.066133
39. Clauset, A., Newman, M. E. J., and Moore, C. Finding community structure in very large networks. Phys. Rev. E, 2004, 70(6), 066111.
https://doi.org/10.1103/PhysRevE.70.066111
40. Rendón de la Torre, S., Kalda, J., Kitt, R., and Engelbrecht, J. On the topologic structure of economic complex networks: empirical evidence from large scale payment network of Estonia. Chaos Soliton. Fract., 2016, 90, 18–27.
https://doi.org/10.1016/j.chaos.2016.01.018