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Abstract. Revealing the community structure exhibited by real networks is a fundamental phase towards a comprehensive 
understanding of complex systems beyond the local organization of their components. Community detection techniques help in 
providing insights into understanding the local organization of the components of networks. We identified and investigated the 
overlapping community structure of an interesting and unique case of study: the Estonian network of payments. In order to 
perform the study, we used the Clique Percolation Method and explored statistical distribution functions of the communities, 
where in most cases we found scale-free properties. In this network the nodes represent Estonian companies and the links 
represent payments made between the companies. Our study adds to the literature of complex networks by presenting the first 
overlapping community detection analysis of a country’s network of payments. 
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1. INTRODUCTION 
* 
A network is a set of nodes connected by links. A 
complex network has nontrivial topological features and 
most of the real-world networks are complex. Complex 
networks can be described by a combination of local, 
global, and mesoscale approaches. The exploration of 
intermediate-sized structures that are responsible for 
“coupling” local properties demands partitioning net-
works into useful groups of nodes [1]. Networks have 
sections in which the nodes are more densely connected to 
each other than to the rest of the nodes in the network, and 
such sub-sections are called communities. Communities 
may exist in networked systems of different nature, 
such as economics, sociology, biology, engineering, 
politics, and computer science.  
                                                           
* Corresponding author, stretomx@gmail.com 

Community detection is a graph partitioning process 
that provides valuable insight into the organizational 
principles of networks and is essential for exploring and 
predicting connections that are not yet observed. Thus 
far, recent advances in the underlying mechanisms that 
rule the dynamics of communities in networks are limited, 
and this is why the achievement of an extensive and wider 
understanding of communities is important. Locating 
the underlying community structure in a network allows 
studying the network more easily and can provide 
insights into the function of the system represented by the 
network, as communities often correspond to functional 
units of systems. The study of communities and their 
properties also helps in revealing relevant groups of 
nodes, creating meaningful classifications, discovering 
similarities, or revealing unknown linkages between 
nodes. Communities have a strong impact on the 
behaviour of a network as a whole and studying them is 
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fundamental in order to expand the knowledge of the 
community structure beyond the local organization of 
the components of networks. 

The usefulness of identifying the communities within 
networks lies in how this information could be used in  
a practical scenario. Particularly, in the context of the 
bank industry the output of our community analysis 
(based on payments between companies which are 
customers of a bank) could be used for targeted 
marketing. For example, it could be used at the moment 
of integrating criteria for creating target groups of 
customers to whom certain products or lines of products 
would be offered. Customers in the same community 
would be included in the same target group and later on, 
after one offer is made to them, it would be possible and 
interesting to assess the contagion effects of the product 
acquisition among customers of the same communities 
who received the same offer. Another useful application 
is when helping to create customer-level segmentations 
or marketing profiles. To know the community (or 
communities) where a customer belongs to could be one 
of the main features for creating customer profiles or 
clustering levels. An alternative usage of the output  
of community analysis is in predictive analytics, for 
example, when building churn models. Churn models 
usually define a measure of the potential risk of a 
customer cancelling a product or service and provide 
awareness and metrics to execute retention efforts against 
churning. The communities to which the companies/ 
customers belong to could be used as variables or 
features when using logistic regression, random forest, 
or neural network models. Additionally, community 
detection analysis could be used as input for product 
affinity and recommender systems. Affinity analysis is a 
data mining technique that helps group customers based 
on historical data of purchased products and is used for 
cross-selling product recommendations. Another useful 
and immediate application is in product acquisition 
propensity models. These models calculate customers’ 
likelihood to acquire a product after an offer is made 
based on a myriad of variables and with this evidence 
the sales process can become more efficient.  

The objective of this study is to detect the over-
lapping community structure of the large-scale payments 
network of Estonia by examining its characteristics and 
scale-free properties through the Clique Percolation 
Method [2,3]. First, we detect communities and then we 
analyse the global structure of the network through the 
distribution functions of four basic quantities. 

The research questions for this study are the following: 
Which is the community structure of the Estonian 
network of payments? Are there scale-free properties in 
the community structure?  

Section 1 provides a general introduction and an 
overview of the objectives. In Section 2 we deliver a 
description of the data set used in this study. Section 3 
provides a literature review of studies related to similar 
networks and their applications. In Section 4 we present 
the method used to develop this study, while Section 5 
presents our main results and findings. Finally, Section 6 
concludes with a discussion of our results. 

 
 

2. ANALYSED  DATA 
 
Our data set was obtained from Swedbank’s databases. 
Swedbank is one of the leading banks in the Nordic and 
Baltic regions of Europe. The bank operates actively  
in Estonia, Latvia, Lithuania, and Sweden. All the 
information related to the identities of the nodes is very 
sensitive and thus will remain confidential and un-
fortunately cannot be disclosed. The data set is unique 
in its kind and very interesting since ~80% of Estonia’s 
bank transactions are executed through Swedbank’s 
system of payments. Hence, this data set reproduces well 
the transactional trends of the whole Estonian economy, 
so we use it as a proxy of the Estonian economy.  

The data set consists of electronic company-to-
company domestic payments, including data of 16 613 
companies and 3.4 million payment transactions (October 
2013–December 2014). In this study, the nodes re-
present companies and the links represent the payments 
between the companies. For simplicity, we focus on the 
basic case where the network of payments is defined by 
a symmetric payment adjacency matrix that represents 
the whole image of the network. We consider an un-
directed graph approach where two nodes have a link if 
they share one or more payments. Then each element 
represents a link as follows: ,u u

ij jia a  where 1u
ija   if 

there is a transaction between companies i  and ,j  
and 0u

ija   if there is no transaction between i  and .j  
Tables 1 and 2 show main measures and statistics 

of our network of payments. The average degree of 
our network is 21k   while the diameter is 29. The 
average betweenness of links is 41, while it is 112 for 
nodes. The average shortest path length 7.3l   Our 
network is a “small world” with 7 degrees of separation, 
so on average any company can be reached by another 
within seven steps. An average degree of separation of 7 
is a very small value for a network of size 16 613.N   
The network displays scale-free properties in the degree 
distribution. The degree distribution follows a power-law 
where the scaling exponent is    2.46 .P k k    The 
network has a low average clustering coefficient of 0.19 
and displays disassortative mixing behaviour, where 
high-degree nodes, represented by companies who have  
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Table 1. Network characteristics 
 
Number of companies analysed 16 613 
Total number of payments analysed 3 406 651 
Total value of transactions 4 342 109 265* 
Average value of transaction per  

customer 
99 904* 

Maximum value of a transaction 135 736* 
Minimum value of a transaction 

(aggregated) 
1000* 

Average volume of transaction per  
company  

76 

Maximum volume of transaction per 
company 

34 665 

Minimum volume of transaction per 
company (aggregated) 

20 

____________________ 

* All monetary quantities are expressed in monetary units and 
not in real currencies in order to protect the confidentiality 
of the data set. The purpose of showing monetary units is to 
provide a notion of the proportions of quantities and not to 
show exact amounts of money. 

 
 

Table 2. Summary of statistics 
 

___________________ 

k = average degree, γo = scaling exponent of the out-degree 
distribution, γi = scaling exponent of the in-degree distribution, 
γ = scaling exponent of the connectivity degree distribution, 

C = average clustering coefficient, l = average shortest 
path length, T = connectivity %, D = diameter,  = average 
betweenness.  

 
 

many counterparties such as business partners, service 
providers, clients, or suppliers, have a large number of 
links to companies which have only one link, or just 
few links. 

 
 

3. LITERATURE  DISCUSSION 
 
Networks play an important role in a wide range of 
economic and social phenomena. The use of techniques 
and methods from graph theory has permitted eco- 

nomic network theory to expand the knowledge and 
understanding of economic phenomena in which the 
embeddedness of individuals or agents in their social  
or economic interrelations cannot be ignored [4]. For 
example, Souma et al. [5] studied a shareholder network 
of Japanese companies by analysing the companies’ 
growth through economic networks dynamics. Other 
examples of interesting applications of complex networks 
in economics are provided by the regional investment 
or ownership networks where European company-to-
company investment stocks show power-law distributions 
that allow predicting the investments that will be received 
or made in specific regions, based on the connectivity 
and transactional activity of the companies [6,7]. Nakano 
and White [8] showed that analytic concepts and 
methods related to complex networks can help to uncover 
structural factors that may influence the price formation 
for empirical market-link formations of economic 
agents. Reyes et al. [9] used a weighted network analysis 
focused on using random walk betweenness centrality 
to study why high-performing Asian economies had 
higher economic growth than Latin American economies 
between 1980 and 2005. Network-based approaches are 
very useful serving as a means for monitoring complex 
economic systems and may help in providing better 
control in managing and governing these systems. 
Another interesting line of research is related to network 
topology as a basis for investigating money flows of 
customer-driven banking transactions. A few recent 
papers describe the actual topologies observed in differ-
ent financial systems [10–13]. Other works have focused 
on economic shocks and robustness in economic complex 
networks [14,15]. 

Regarding community studies on economic networks 
and their applications, Vitali and Battiston [16] studied 
the community structure of a global corporate network 
and found that geography is the major driver of organ-
ization within that network. In this study they also 
assessed the role of the financial sector in the architecture 
of the global corporate network by analysing centralities 
of communities. Fenn et al. [17] studied the evolution of 
communities of a foreign exchange market network in 
which each node represents an exchange rate and each 
link represents a time-dependent correlation between 
the rates. By using community detection, they were able 
to uncover major trading changes that occurred in the 
market during the credit crisis of 2008. Other economic 
communities’ studies have focused on the overlapping 
feature of communities (e.g. [18,19]). 

General community detection studies on other types 
of networks deal with communities representing real 
social groupings [20–22], communities in a co-authorship 
network representing related publications of specific 
topics [23], protein–protein interaction networks [24], 

Statistic Value 

k  21 
γo 2.41 
γi 2.50 
γ  2.46 

C  0.19 
l  7.3 

T 0.13 
D 29 
  (nodes) 112 
  (links) 41 
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communities in a metabolic network representing cycles 
and functional units in biology [25,26], and communities 
in the World Wide Web representing web pages with 
related contents [27]. 

Most algorithms for community detection can be dis-
tinguished in divisive, agglomerative, and optimization-
based methods and each one has specific strengths and 
weaknesses. Previous studies on network communities 
based on divisive and agglomerative methods consider 
that structures of communities can be expressed in terms 
of separated groups of clusters [28–31], but most of 
the real networks are characterized by well-defined 
statistics of overlapping communities. An important 
limitation of the popular node partitioning methods is 
that a node must be in one single community, whereas it 
is often more appropriate to attribute a node to several 
different communities, particularly in real-world net-
works. An example where community overlapping  
is commonly observed is in social networks where 
individuals typically belong to many communities such 
as work teams, religious groups, friendship groups, hobby 
clubs, family, or other similar social communities. 
Moreover, members of social communities have their 
own communities and this in turn results in a very 
complex web of communities [3]. The phenomenon of 
community overlapping has already been noticed by 
sociologists but has been barely studied systematically 
for large-scale networks [2,32–35]. 

 
 

4. METHOD 
 
Overlapping communities arise when a node is a member 
of more than one community. In economic systems the 
nodes can frequently belong to multiple communities, 
therefore, forcing each node to belong into a single 
community might result in a misleading characterization 
of the underlying community structure. The Clique 
Percolation Method [2,3] is based on the assumption 
that a community comprises overlapping sets of fully 
connected subgraphs and detects communities by 
searching for adjacent cliques. A clique is a complete 
(fully connected) subgraph. A k-clique is a complete 
subgraph of size k  (the number of nodes in the sub-
graph). Two nodes are connected if the k-cliques that 
represent them share 1k   members. The method begins 
by identifying all cliques of size k  in a network. When 
all the cliques are identified, then an C CN N  clique–
clique overlapping symmetric matrix O  can be con-
structed, where CN  is the number of cliques and ijO  is 
the number of nodes shared by cliques i and j [36]. 
This overlapping matrix O  encodes all the important 
information needed to extract the k-clique communities 
for any value of .k  In the overlapping matrix ,O  rows 

and columns represent cliques and the elements are 
the number of shared nodes between the corresponding 
two cliques. Diagonal elements represent the size of 
the clique and when two cliques intersect, they form 
a community. 

For certain k  values, the k-clique communities 
form such connected clique components in which their 
nearby cliques are linked to each other by at least 1k   
adjacent nodes. In order to find these components in the 
overlapping matrix ,O  one should keep the entries of 
the overlapping matrix which are larger than or equal 
to 1,k   set the others to zero, and finally locate the 
connected components of the overlapping matrix .O  
Communities correspond to each one of the identified 
separated components [2]. 
 
 
5. RESULTS 

5.1. Parameter  k  
 
For the Clique Percolation Method it is important to 
choose a parameter .k  The parameter k  affects the 
constituents of the overlapping regions between com-
munities. The larger the parameter ,k  the smaller the 
number of nodes which can arise in the overlapping 
regions. When ,k   the maximal clique network is 
identical to the original network and no overlap  
is identified. The choice of k  will depend on the 
network. It is observed from many real-world net-
works that the typical value of k  is often between 3 
and 6 [37]. 

Figure 1 shows a plot of the number of communities 
and the average size of the communities at different k 
values. As k  increases, the number of communities 
decreases, while the size of the communities increases 
rapidly. When k  decreases, the number of communities 
increases rapidly, while the size of the communities 
remains low.  In order to obtain the optimal value of k, 
we tested different values ranging from 3 to 10 and a 
posteriori we chose 5k   because when < 5,k  a large 
number of communities arise and the partitions become 
very low and giant communities appear (with sizes of 
more than 3200); at the level 5k   we obtain a rich 
partition with the most widely distributed cluster sizes 
set for which no giant community appears. 

An overlapping community graph is a representation 
of a network that denotes links between communities, 
where the nodes represent the communities and the links 
are represented by the shared nodes between communities. 
For visualization purposes and in order to draw a readable 
map of the network, Fig. 2 shows a graphic view of  
a representative section of the overlapping network  
of communities where big and small communities can 
easily be distinguished. Figure 2 depicts 25 overlapping  
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communities and each coloured circle represents a node 
which in turn represents an overlapping community. 
The links represent the shared nodes between the 
communities. The size of the nodes characterizes the 
size of each community. For example, the big node in 
the middle represents a community with 61 companies.  

 
5.2. Structure  of  communities 
 
In order to study and characterize the global community 
structure of our network, we investigated the distribution 
functions of the following four elementary quantities: 
community size   ,P s  overlap size   ,oP s  community 

 

 
 

Fig. 1. Plot of the average size of community (s) and number of communities (c) as k  increases. Squares represent the number of
communities and triangles represent the size of the communities. 

 
 
 

 
 
Fig. 2. Visual representation of a section of
the overlapping network of communities
(Estonian network of payments). The circles
(nodes) represent communities and the black
lines between them represent shared nodes
between communities.  
 

 3                4                5               6                7                8               9              10 
k 

6000

5000

4000

3000

2000

1000

0

C
 

450 

400 

350 

300 

250 

200 

150 

100 

50 

0 

S
 



Proceedings of the Estonian Academy of Sciences, 2019, 68, 1, 79–88 

 

84 

degree   ,P d  and membership number  .P m  The 
aforementioned distributions are shown in Figs 3–7. In 
general, nodes in a network can be characterized by a 
membership number which is the number of communities 
a node belongs to. This means that, for example, any 
two communities may share some of their nodes which 
correspond to the overlap size between those com-
munities. There is also a network of communities where 
the overlaps are represented by the links and the 
communities are represented by the nodes, and the 
number of such links is called community degree. The 
size of any of those communities is defined by the 
number of nodes it has. 

The community size distribution is an important 
statistic that describes partially the system of com-
munities. Figure 3 displays the cumulative distribution 
function of the community size  P s  and shows the 
probability of a community to have a size higher than or 
equal to s  calculated over different points in time, 
where t  is the time in months. The overall distribution 
of community sizes resembles a power-law   ,P s s  
where   is the scaling exponent, and a power-law is 
valid nearly over all times .t  The scaling exponent 
(calculated by maximum likelihood estimators) when 

3t   is –2.8 (included for eye guideline) and its corres-
ponding equation is as follows: 
 

  2.8.P s s  

The sizes of the communities at 1t   are smaller 
than in the rest of the months; as time increases, the size 
increases, particularly the size of the largest communities. 
The shapes of the power-laws observed in the community 
size distributions of Fig. 3 suggest there is no charac-
teristic community size in the network. The distribution 
at different moments in time follows similar decaying 
patterns, but in general, the scaling tail is higher as  
t  increases. A fat tail distribution implies that there  
are numerous small communities coexisting with few 
large communities [38,39]. Figure 4 shows statistics 
of the community sizes across time and according  
to the plot, both the standard deviation of community 
sizes and the average size of communities increased 
with time.  

In a network of overlapping communities, the overlaps 
are represented by the links and the number of those 
links is represented by the community degree .d  Then, 
the degree d  is the number of communities another 
community overlaps. Figure 5 shows the cumulative 
distribution of the community degrees in the network. 
Some outstanding community degrees occur by the end 
of the tail and these include communities that cluster the 
majority of the biggest customers in the network. The 
central part of the distribution decays faster than the rest 
of the distribution. There is an observable curvature in 
the log–log plot, however, no approximation method 
fitted the distribution. Figure 5 shows that the maximum  

 

 
 

Fig. 3. Cumulative community size distribution at different times t  (log–log scale). 
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number of degrees d  is 63 and corresponds to a relatively 
small quantity of nodes. 

A node i  of a network can be characterized by a 
membership number ,im  which is the number of 
communities where the node i  belongs to. Figure 6 shows 
the cumulative distribution of the membership number 

.im  The distribution follows a power-law where no 
characteristic scale exists. The largest membership 
number found in the network was 10, meaning that a 

company can belong to a maximum of 10 different 
communities simultaneously. Figure 6 shows that the 
fraction of nodes that belong to many different com-
munities is quite small, while the fraction of nodes 
belonging to at least one community is high. For example, 
when 1,m   the percentage of nodes that belong to  
at least one community is 50%, while the percentage of 
nodes that belong simultaneously to 10 communities 
 10m   is extremely small. However, the rest of the 

 

 
 

Fig. 4. Statistics of community size; s  is the average community size,   is the standard deviation of the size of communities at
different times .t  

 

 
 

Fig. 5. Cumulative distribution of community degrees d  (log–log scale). 
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communities belong to at least two or more communities. 
The companies that overlap 10 communities belong to 
the energy and water services. The majority of the nodes 
that have 1m   have a degree that is less than 1k  , 
meaning they are weakly connected. 

The range to which the communities overlap each 
other is also an important property of our network. The 
overlap size is defined as the number of nodes that two 
communities share.  oP s  is the proportion of overlaps 
larger than .os  Figure 7 shows the cumulative distribution 

 

 
 

Fig. 6. Cumulative distribution function of the membership number im  (log–log scale). 
 

 

 
 

Fig. 7. Cumulative distribution function of the overlap size os  (log–log scale). 
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function of the overlap size. In general, although the 
extent of overlap sizes is limited, the data is close to 
power-law dependence, meaning there is no charac-
teristic overlap size. The largest overlap size is 22, 
however, at 9os   the number of overlapping nodes 
becomes small.  

In our previous study [40] we found scale-free 
properties in the degree distributions of the Estonian 
network of payments and it is interesting to observe that 
the scale-free property is also preserved at a higher level 
of organization where overlapping communities are 
present. Scale-free networks are resilient against random 
removal of nodes. This means that it is difficult to destroy 
a complex network by random mechanisms, but if the 
exact portion of particularly selected nodes is removed, 
the network breaks easily. When the degree distributions 
of networks present scale-free structure, then this fact 
determines the topology of the system. Scale-free net-
works are robust against random damages but vulnerable 
against targeted attacks of nodes. 
 
 
6. CONCLUSIONS 
 
In this study we analysed the community structure of 
the Estonian network of payments by using the Clique 
Percolation Method. We found that there were scale-free 
properties in the statistical distributions of the community 
structure. The size, overlap, and membership distributions 
follow shapes that are compatible with power-laws. 
Power-law distributions have already appeared in this 
network at a global scale in the level of nodes [40], and 
in this community structure study we have shown that 
power-laws are present at the level of overlapping 
communities as well. This study adds to the existing 
literature on complex networks by presenting the first 
overlapping community analysis of a country’s network 
of payments. 

An immediate application and usefulness of the 
community detection output is that it can be used in 
targeted marketing activities, as input for predictive 
analytical models such as product acquisition propensities, 
churn propensities, product affinity analyses, for creating 
marketing profiles or customer segmentations, and for 
creating customer target lists for product offering (in  
an effort to propagate consumer buzz effects). Further 
applications of community detection in similar economic 
networks could involve strengthening relationships 
between companies of the same community for improving 
the performance of the whole network, identification of 
patterns between companies, and tracking suspicious 
business activities. 

A question that remains open for future research is 
to investigate if the similarities in communities’ features 

amongst different complex networks arise randomly 
or if there are any unknown properties shared by all 
of them. Another line of research that remains open is 
the plausibility of forecasting changes in a payment 
network through communities’ detection analysis. 
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Kattuvate  kommuunide  tuvastamine  Eesti  maksevõrgustikus 
 

Stephanie Rendón de la Torre, Jaan Kalda, Robert Kitt ja Jüri Engelbrecht 
 
Reaalselt eksisteerivates võrgustikes sisalduvate kommuunide tuvastamine on üheks põhietapiks teel kompleks-
süsteemide selliste seaduspärasuste mõistmise poole, mis lähevad üksikelementide lokaalsete interaktsioonide käsit-
lemisest sügavamale. Kommuunide tuvastamise meetodid aitavad võrgustike komponentide lokaalstruktuuridele 
valgust heita. Käesolevas uurimuses identifitseerime ja uurime kattuvate kommuunide struktuure olulises unikaalses 
võrgustikus: Eesti maksevõrgustikus. Selleks otstarbeks kasutame nn klikk-perkolatsiooni meetodit ja uurime kom-
muunide jaotusfunktsioone ning kommuunide mastaabi-invariantseid omadusi. Antud võrgustikus on sõlmpunktideks 
Eesti ettevõtted ja sidemeteks maksed erinevate ettevõtete vahel. Tegemist on esmakordse uurimusega, kus tuvas-
tatakse kattuvad kommuunid ühe riigi ettevõtete vaheliste maksete võrgustikus. 


