ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Mechanical and physical properties of industrial hemp-based insulation materials; pp. 183–192
PDF | https://doi.org/10.3176/proc.2018.2.10

Authors
Heikko Kallakas, Merili Närep, Aivo Närep, Triinu Poltimäe, Jaan Kers
Abstract

In recent years, research in the field of insulation materials in buildings has been focusing increasingly more upon ecological properties of these materials. Hemp is an annual bast fibre plant, which delivers fibres, shives, and seeds. Bast fibres are used as a raw material for thermal insulations while shives have been mainly used in animal bedding and construction. The aim of this research was to evaluate the mechanical and physical properties of the industrial hemp fibre- and bast-based insulation materials and compare them with wood-based materials. For producing hemp fibreboards, the hemp shives were ground with separative milling by a semi-industrial disintegrator to the average particle size of 0.136 mm. Urea–formaldehyde (UF) resin was used as the adhesive for hemp particleboards and fibreboards made by the dry method. Fibreboards made by the wet method were bonded without using any binders. Some fibreboards made by the dry method were covered with kraft paper on both sides using UF resin and PVA glue. Properties of particleboards and fibreboards were tested with the determination of density, swelling, resistance to axial withdrawal of screws, tensile strength perpendicular to the plane of the board, bending strength, and air permeability. The results showed that fibreboards made by the dry method were stronger and tougher than fibreboards made by the wet method. The only shortcoming of the former was their low water resistance as samples dissolved in water. Hemp particleboards were lighter and less dense than wood particleboards. However, the mechanical properties of the hemp particleboards were inferior to those of wood particleboards. In addition, the levels of water absorption and swelling of the hemp particleboards were higher than those of the wood particleboards.

References

    1.  Pacheco-Torgal, F. and Jalali, S. Cementitious building materials reinforced with vegetable fibres: a review. Constr. Build. Mater., 2011, 25, 575–581.

https://doi.org/10.1016/j.conbuildmat.2010.07.024

    2.  Preikss, I., Skujans, J., Adamovics, A., and Iljins, U. Evaluation of hemp (Cannabis sativa L.) quality parameters for building materials from foam gypsum products. Chem. Eng. Trans., 2013, 32, 16391644.

    3.  Faruk, O., Bledzki, A. K., Fink, H., and Sain, M. Bio­composites reinforced with natural fibres: 2000–2010. Prog. Polym. Sci., 2012, 37, 1552–1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003

    4.  Youngquist, J. A., English, B. E., Scharmer, R. C., Chow, P., and Shook, S. R. Literature review on use of nonwood plant fibers for building materials and panels. General Technical Report, FPL-GTR-80. U. S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, U. S., 1994.

    5.  Sampathrajan, A., Vijayaraghavan, N. C., and Swaminathan, K. R. Mechanical and thermal properties of boards made from farm residues. Biores. Technol., 1992, 40, 249–251.
https://doi.org/10.1016/0960-8524(92)90151-M

    6.  Bektas, I., Guler, C., Kalaycioglu, H., Mengeloglu, F., and Nacar, M. Manufacture of particleboards using sunflower stalks (Helianthus annuus I.) and poplar wood (Populus alba L.). J. Compos. Mater., 2005, 39, 467–473.
https://doi.org/10.1177/0021998305047098

    7.  Cöpür, Y., Guler, C., Akgul, M., and Tascioglu, C. Some chemical properties of hazelnut husk and its suitability for particleboard production. Build. Environ., 2007, 42, 2568–2572.
https://doi.org/10.1016/j.buildenv.2006.07.011

    8.  Krilovs, E., Gusovius, H-J., Kukle, S., and Emsiņš, J. Performance of fibreboards made from wetpreserved hemp. Material Science. Textile and Clothing Technology, 2013, 8, 6569.

    9.  Carus, M., Karst, S., Kauffmann, A., Hobson, J., and Bertucelli, S. The European Hemp Industry: Cultivation, Processing and Applications for Fibres, Shivs and Seeds. European Industrial Hemp Association, 2013.

 10.  Kymäläinen, H-R. and Sjöberg, A-M. Flax and hemp fibres as raw materials for thermal insulations. Build. Environ., 2008, 43, 1261–1269.
https://doi.org/10.1016/j.buildenv.2007.03.006

 11.  Nykter, M. Microbial Quality of Hemp (Cannabis sativa L.) and Flax (Linum usitatissimum L.) from Plants to Thermal Insulation. PhD thesis. University of Helsinki, Department of Agrotechnology, 2006.

 12.  Kymäläinen, H-R., Koivula, M., and Kuisma, R. Quality requirements of flax, linseed and hemp fibre for insulation materials. University of Helsinki, Department of Agricultural Engineering and Household Technology, 2002.

 13.  Hague, J. Substitution of particles and fibers from agricultural crops into wood-based panels. Ministry of Agriculture, Fisheries and Food Research and Development NF0301 Final Project Report. BioCompos­ites Center, University of Wales Bangor, 1998.

 14.  Theis, M. and Grohe, B. Biodegradable lightweight con­struction based on tannin/hexamine bonded hemp shaves. Holz Roh Werkst., 2002, 60, 291–296.
https://doi.org/10.1007/s00107-002-0306-0

 15.  Balducci, F., Harper, C., Meinlschmidt, P., Dix, B., and Sanasi, A. Development of innovative particleboard panels. Drvna Industrija, 2008, 59, 131–136.

 16.  Nikvash, N., Kraft, R., Kharazipour, A., and Euring, M. Comparative properties of bagasse, canola and hemp particleboards. Eur. J. Wood Wood Prod., 2010, 68, 323–327.
https://doi.org/10.1007/s00107-010-0465-3

 17.  Lühr, C., Pecenka, R., Gusovius, H-J., Wallot, G., Rinberg, R., and Tech, S. Development of an axial fractionator for hemp shive cleaning and industrial applications of shives. J. Agr. Sci., 2013, 5, 9–16.

 18.  Collet, F., Bart, M., Serres, L., and Miriel, J. Porous structure and water vapour sorption of hemp-based materials. Constr. Build. Mater., 2008, 22, 1271–1280.
https://doi.org/10.1016/j.conbuildmat.2007.01.018

 19.  Fourmentin, M., Faure, P., Pelupessy, P., Sarou-Kanian, V., Peter, U., Lesueur, D., et al. NMR and MRI observation of water absorption/uptake in hemp shives used for hemp concrete. Constr. Build. Mater., 2016, 124, 405–413.
https://doi.org/10.1016/j.conbuildmat.2016.07.100

 20.  Stevulova, N., Kidalova, L., Cigasova, J., Junak, J., Sicakova, A., and Terpakova, E. Lightweight compos­ites containing hemp hurds. Procedia Eng., 2013, 65, 69–74.
https://doi.org/10.1016/j.proeng.2013.09.013

 21.  Eesti Standardikeskus. EVS-EN 323:2002. Wood-based panels - Determination of density.

 22.  Eesti Standardikeskus. EVS-EN 317:2000. Particleboards and fibreboards - Determination of swelling in thickness after immersion in water.

 23.  Eesti Standardikeskus. EVS-EN 320:2011. Particleboards and fibreboards - Determination of resistance to axial withdrawal of screws.

 24.  Eesti Standardikeskus. EVS-EN 319:2000. Particleboards and fibreboards - Determination of tensile strength perpendicular to the plane of the board.

 25.  Eesti Standardikeskus. EVS-EN 310:2002. Wood-based panels - Determination of modulus of elasticity in bending and bending strength.

 26.  Eesti Standardikeskus. EVS-EN 12114:2000. Thermal performance of buildings - Air permeability of building components and building elements - Laboratory test method.

 27.  Engineered Wood Products Association of Australasia. http://www.ewp.asn.au/ (accessed 2018-03-26).

 28.  Acara Concepts. http://www.acaraconcepts.com/wp-content/themes/acaraconcepts/pdfs/Brochure-Pavatex-Products&Application.pdf (accessed 2018-03-29).

 29.  Pickering, K. L. (ed.) Properties and Performance of Natural-Fibre Composites. Woodhead Publishing Limited, Cambridge, England, 2008.
https://doi.org/10.1201/9781439832141
https://doi.org/10.1533/9781845694593

 30.  Acara Concepts. http://www.acaraconcepts.com/wood-fibre-insulation/ (accessed 2018-03-26).

 31.  Eesti Standardikeskus. EVS-EN 622-4:2010. Fiberboards - Specifications - Part 4: Requirements for softboards.

 32.  Eesti Standardikeskus. EVS-EN 622-5:2010. Fibreboards - Specifications - Part 5: Requirements for dry process boards (MDF).

 33.  Eesti Standardikeskus. EcoBoards. http://www.eco-boards.eu/ sample-page/ecoboard-softboard/ (accessed 2018-03-27).

  34. Eesti Standardikeskus. EVS-EN 622-3:2004. Fibreboards - Specifications - Part 3: Requirements for medium boards.

Back to Issue