In the present work, the heat losses of ferroelectric ceramics due to the switching processes were studied in high-amplitude AC electric fields in a wide frequency range of 50 to 1500 Hz. We showed the existence of a correlation between the time dependences of switchable polarization and self-heating temperature. Based on the approximation of the experimental data, an analytical expression was obtained for describing the decrease in the switched polarization with increasing electric field frequency corresponding to the exponential law. The method of estimating volumetric heat capacity coefficient by using the heat dissipation during the switching process was proposed.
1. Jha, A. R. MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications. CRC Press., Baco Raton, 2008.
2. Jalili, N. and Afshari, M. Piezoelectric-Based Vibration Control: From Macro to Micro, in: Nano Scale Systems. Springer, New York, 2010.
https://doi.org/10.1007/978-1-4419-0070-8
3. Visvanathan, K. and Gianchandani, Y. B. Microheaters based on ultrasonic actuation of piezoceramic elements. J. Micromech. Microeng., 2011, 21, 085030 (10pp).
4. Uchino, K. and Giniewicz, J. R. Micromechatronics. Marcel Dekker, New York, 2003.
5. Tong, Yi-Z., Minghao, Z., and Pin, T. Fracture of piezoelectric ceramics. Adv. Appl. Mech., 2002, 38, 147–289.
https://doi.org/10.1016/S0065-2156(02)80104-1
6. Liu, G., Zhang, S., Jiang, W., and Cao, W. Losses in ferroelectric materials. Mater. Sci. Eng. R Rep., 2015, 89, 1–48.
https://doi.org/10.1016/j.mser.2015.01.002
7. Ueha, S., Tomikawa, Y., Kurosawa, M., and Nakamura, N. Ultrasonic Motors: Theory and Applications. Clarendon Press, Oxford, U.K., 1993.
8. Shigematsu, T., Kurosawa, M. K., and Asai, K. Nanometer stepping drives of surface acoustic wave motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control, 2003, 50, 376–385.
https://doi.org/10.1109/TUFFC.2003.1197960
9. Senousy, M. S., Li, F. X., Mumford, D., Gadala, M., and Rajapakse, R. K. N. D. Thermo-electro-mechanical performance of piezoelectric stack actuators for fuel injector applications. J. Intell. Mater. Syst. Struct., 2009, 20, 387–399.
https://doi.org/10.1177/1045389X08095030
10. Harlow, J. H. Electric Power Transformer Engineering. CRC Press, Baco Raton, 2004.
11. Crowell, B. Vibrations and Waves, in: Light and Matter online text series. Fullerton, California, 2006.
12. Tooley, M. Electronic Circuits: Fundamentals and Applications. Elsevier, 2006.
13. Ikeda, T. Fundamentals of Piezoelectricity. Oxford University Press, 1996.
14. Zhang, Q. M., Wang, H., and Zhao, J. Effect of driving field and temperature on the response behavior of ferroelectric actuator and sensor materials. J. Intell. Mater. Syst. Struct., 1995, 6, 84–93.
https://doi.org/10.1177/1045389X9500600111
15. Sakai, T. and Kawamoto, H. Durability properties of piezoelectric stack actuator. Japan. J. Appl. Phys., 1998, 37, 5338–5341.
https://doi.org/10.1143/JJAP.37.5338
16. Zheng, J., Takahashi, S., Yoshikawa, Sh., and Uchino, K. Heat generation in multilayer piezoelectric actuator.
J. Amer. Ceram. Soc., 1996, 79, 3193–3198.
https://doi.org/10.1111/j.1151-2916.1996.tb08095.x
17. Malyshkina, O. V. and Eliseev, A. Yu. Power dissipation during dielectric loop evolution in PZT ceramics. Ferroelectrics, 2015, 480:1, 10–15.
https://doi.org/10.1080/00150193.2015.1012395
18. Shebanovs, L., Borman, K., Lawless, W. N., and Kalvane, A. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics, 2002, 273:1, 137–142.
https://doi.org/10.1080/00150190211761
19. Kallaev, S. N., Omarov, Z. M., Bilalov, A. R., Rabadanov, M. Kh., Sadykov, S. A., and Bormanis, K. Specific features of the thermal physical properties of relaxor ceramics based on lead zirconate titanate. Phys. Solid State, 2009, 51, 1524–1526.
https://doi.org/10.1134/S106378340907052X