The paper gives an overview of an algebraic approach based on differential 1-forms, developed for the study of nonlinear control systems. The purpose of the paper is to describe the approach, comment on the necessary assumptions made, and demonstrate the effectiveness and limitations of the approach. Two very important aspects of the approach are as follows: (1) one works with differentials and not with functions, meaning that computations are, up to integration similar to the linear case and (2) the approach is used to study generic properties of control systems that hold for almost every point of a suitable domain. The first point means that solutions to various problems are found in terms of 1-forms and the integrability properties allow transformation of the solution back to the level of functions. The study of generic properties simplifies the presentation of the solutions, since there is no need to specify the working point and its neighbourhood. Finally, the paper includes an extensive list of publications, where the approach of 1-forms is studied or applied to solve different control problems.
1. Abramov, S. A., Le, H. Q., and Li, Z. Univariate Ore polynomial rings in computer algebra. J. Math. Sci., 2005, 131(5), 5885–5903.
https://doi.org/10.1007/s10958-005-0449-8
2. Aranda-Bricaire, E. and Kotta, Ü. Generalized controlled invariance for discrete-time nonlinear systems with an application to the dynamic disturbance decoupling problem. IEEE Trans. Autom. Control, 2001, 46(1), 165–171.
https://doi.org/10.1109/9.898712
3. Aranda-Bricaire, E. and Kotta, Ü. A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems. Kybernetika, 2004, 40(2), 197–206.
4. Aranda-Bricaire, E., Kotta, Ü., and Moog, C. H. Linearization of discrete-time systems. SIAM J. Control Optim., 1996, 34(6), 1999–2023.
https://doi.org/10.1137/S0363012994267315
5. Aranda-Bricaire, E. and Moog, C. H. Linearization of discrete-time systems by exogenous dynamic feedback. Automatica, 2008, 44(7), 1707–1717.
https://doi.org/10.1016/j.automatica.2007.10.030
6. Bartosiewicz, Z., Belikov, J., Kotta, Ü., Tõnso, M., andWyrwas, M. On the transformation of a nonlinear discrete-time input-output system into the strong row-reduced form. Proc. Estonian Acad. Sci., 2016, 65(3), 220–236.
https://doi.org/10.3176/proc.2016.3.02
7. Bartosiewicz, Z., Kotta, Ü., Mullari, T., Tõnso, M., Pawluszewicz, E., and Wyrwas, M. Nabla derivatives associated with nonlinear control systems on homogeneous time scales. Nonlinear Anal. Model. Control, 2016, 21(4), 547–563.
8. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. Algebraic formalism of differential p-forms and vector fields for nonlinear control systems on homogeneous time scale. Proc. Estonian Acad. Sci., 2013, 62(4), 215–226.
https://doi.org/10.3176/proc.2013.4.02
9. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. Reducibility condition for nonlinear discrete-time systems: behavioral approach. Control Cybern., 2013, 42(2), 1–18.
10. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. Transforming a set of nonlinear input-output equations into Popov form. In Conference on Decision and Control. Osaka, Japan, 2015, 7131–7136.
11. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., and Wyrwas, M. Algebraic formalism of differential one-forms for nonlinear control systems on time scales. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56(3), 264–282.
12. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., and Wyrwas, M. Control systems on regular time scales and their differential rings. Math. Control Signals Syst., 2011, 22(3), 185–201.
https://doi.org/10.1007/s00498-011-0058-7
13. Bartosiewicz, Z., Kotta, Ü., Tõnso, M., and Wyrwas, M. Static state feedback linearization of nonlinear control systems on homogeneous time scales. Math. Control Signals Syst., 2015, 27(4), 523–550.
https://doi.org/10.1007/s00498-015-0150-5
14. Bartosiewicz, Z., Kotta, Ü., Tõnso, M., and Wyrwas, M. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Math. Control Relat. F., 2016, 6(2), 217–250.
https://doi.org/10.3934/mcrf.2016002
15. Belikov, J., Halás, M., Kotta, Ü., and Moog, C. H. Model matching problem for discrete-time nonlinear systems. Proc. Estonian Acad. Sci., 2015, 64(4), 457–472.
https://doi.org/10.3176/proc.2015.4.01
16. Belikov, J., Halás, M., Kotta, Ü., and Moog, C. H. A polynomial approach to a nonlinear model matching problem. Proc. Estonian Acad. Sci., 2016, 65(4), 330–344.
https://doi.org/10.3176/proc.2016.4.02
17. Belikov, J., Kotta, P., Kotta, Ü., and Zinober, A. S. I. Minimal realization of bilinear and quadratic input-output difference equations in state-space form. Int. J. Control, 2011, 84(12), 2024–2034.
https://doi.org/10.1080/00207179.2011.631587
18. Belikov, J., Kotta, Ü., and Leibak, A. Transformation of the transfer matrix of the nonlinear system into the Jacobson form. In The International Congress on Computer Applications and Computational Science. Singapore, 2010, 495–498.
19. Belikov, J., Kotta, Ü., and Tõnso, M. State-space realization of nonlinear control systems: unification and extension via pseudolinear algebra. Kybernetika, 2012, 48(6), 1100–1113.
20. Belikov, J., Kotta, Ü., and Tõnso, M. NLControl: symbolic package for study of nonlinear control systems. In The Multi-Conference on Systems and Control. Hyderabad, India, 2013, 322–327.
https://doi.org/10.1109/cacsd.2013.6663483
21. Belikov, J., Kotta, Ü., and Tõnso, M. Adjoint polynomial formulas for nonlinear state-space realization. IEEE Trans. Autom. Control, 2014, 59(1), 256–261.
https://doi.org/10.1109/TAC.2013.2270868
22. Belikov, J., Kotta, Ü., and Tõnso, M. Comparison of LPV and nonlinear system theory: a realization problem. Syst. Control Lett., 2014, 64, 72–78.
https://doi.org/10.1016/j.sysconle.2013.10.009
23. Belikov, J., Kotta, Ü., and Tõnso, M. Realization of nonlinear MIMO system on homogeneous time scales. Eur. J. Control, 2015, 23, 48–54.
https://doi.org/10.1016/j.ejcon.2015.01.006
24. Blomberg, H. and Ylinen, R. Algebraic Theory for Multivariable Linear Systems, Mathematics in Science and Engineering. Vol. 166. Academic Press, London, UK, 1st edition, 1983.
25. Bourlès, H. Advanced Topics in Control Systems Theory, Lecture Notes in Control and Information Science. Vol. 311, chapter ‘Structural properties of discrete and continuous linear time-varying systems: a unified approach’. Springer, London, 2005, 225–280.
26. Bronstein, M. and Petkovšek, M. An introduction to pseudo-linear algebra. Theor. Comput. Sci., 1996, 157(1), 3–33.
https://doi.org/10.1016/0304-3975(95)00173-5
27. Califano, C., Monaco, S., and Normand-Cyrot, D. On the discrete-time normal form. IEEE Trans. Autom. Control, 1998, 43(11), 1654–1658.
https://doi.org/10.1109/9.728890
28. Califano, C., Monaco, S., and Normand-Cyrot, D. On the problem of feedback linearization. Syst. Control Lett., 1999, 36(1), 61–67.
https://doi.org/10.1016/S0167-6911(98)00070-X
29. Casagrande, D., Kotta, Ü., Tõnso, M., and Wyrwas, M. Transfer equivalence and realization of nonlinear input–output deltadifferential equations on homogeneous time scales. IEEE Trans. Autom. Control, 2010, 55(11), 2601–2606.
https://doi.org/10.1109/TAC.2010.2060251
30. Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleick, M. Analysis, Manifolds and Physics, Part I: Basics. North-Holland, Amsterdam, The Netherlands, 2004.
31. Ciulkin, M., Kaparin, V., Kotta, Ü., and Pawłuszewicz, E. Linearization by input-output injections on homogeneous time scales. Proc. Estonian Acad. Sci., 2014, 63(4), 387–397.
https://doi.org/10.3176/proc.2014.4.04
32. Cohn, R. M. Difference Algebra. Wiley-Interscience, New York, USA, 1965.
33. Conte, G., Moog, C. H., and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Springer-Verlag, London, UK, 2007.
https://doi.org/10.1007/978-1-84628-595-0
34. Conte, G. and Perdon, A. The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim., 1995, 33(3), 750–764.
https://doi.org/10.1137/S0363012992235638
35. Diop, S. Elimination in control theory. Math. Control Signals Syst., 1991, 4(1), 17–32.
https://doi.org/10.1007/BF02551378
36. Dona, J. A. D., Suryawan, F., Seron, M. M., and L´evine, J. Nonlinear Model Predictive Control. Vol. 384, chapter ‘A flatness-based iterative method for reference trajectory generation in constrained NMPC’. Springer, Berlin, 2009, 325–333.
37. Farb, B. and Dennis, R. K. Noncommutative Algebra. Springer-Verlag, New York, USA, 1993.
https://doi.org/10.1007/978-1-4612-0889-1
38. Fliess, M. and Glad, S. T. Essays on Control: Perspectives in the Theory and its Applications. Vol. 14, chapter ‘An algebraic approach to linear and nonlinear control’. Birkhäuser, Boston, 1993, 223–267.
39. Fu, G., Halás, M., Kotta, Ü., and Li, Z. Some remarks on Kähler differentials and ordinary differentials in nonlinear control theory. Syst. Control Lett., 2011, 60(9), 699–703.
https://doi.org/10.1016/j.sysconle.2011.05.006
40. Garcia-Ramirez, E., Moog, C. H., Califano, C., and M´arquez-Mart´ınez, L. A. Linearization via input-output injection of time delay systems. Int. J. Control, 2016, 89(6), 1125–1136.
https://doi.org/10.1080/00207179.2015.1122230
41. Grizzle, J. W. A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim., 1991, 31(4), 1026–1044.
https://doi.org/10.1137/0331046
42. Halás, M. An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica, 2008, 44(5), 1181–1190.
https://doi.org/10.1016/j.automatica.2007.09.008
43. Halás, M. and Kotta, Ü. Transfer functions of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math., 2007, 56(4), 322–335.
44. Halás, M. and Kotta, Ü. A note on model matching for nonrealizable nonlinear systems. Arch. Contr. Sci., 2009, 451–461.
45. Halás, M. and Kotta, Ü. A transfer function approach to the realisation problem of nonlinear control systems. Int. J. Control, 2012, 85(3), 320–331.
https://doi.org/10.1080/00207179.2011.651748
46. Halás, M., Kotta, Ü., Li, Z., Wang, H., and Yuan, C. Submersive rational difference systems and their accessibility. In The 2009 International Symposium on Symbolic and Algebraic Computation. Seoul, Korea, 2009, 175–182.
https://doi.org/10.1145/1576702.1576728
47. Hartmanis, J. and Stearns, R. The Algebraic Structure Theory of Sequential Machines. Prentice-Hall, New York, 1966.
48. Hoagg, J. B., Santillo, M. A., and Bernstein, D. S. Internal model control in the shift and delta domains. IEEE Trans. Autom. Control, 2008, 53(4), 1066–1072.
https://doi.org/10.1109/TAC.2008.921526
49. Tallinn University of Technology. NLControl website. http://www.nlcontrol.ioc.ee, 2015 (accessed 15 January 2017).
50. Isidori, A. Nonlinear Control Systems. Springer-Verlag, London, UK, 1995.
https://doi.org/10.1007/978-1-84628-615-5
51. Jězek, J. Rings of skew polynomials in algebraical approach to control theory. Kybernetika, 1996, 32(1), 63–80.
52. Johnson, J. Kähler differentials and differential algebra. Ann. Math., 1969, 89(1), 92–98.
https://doi.org/10.2307/1970810
53. Kaldm¨ae, A., Califano, C., and Moog, C. H. Integrability for nonlinear time-delay systems. IEEE Trans. Autom. Control, 2016, 61(7), 1912–1917.
https://doi.org/10.1109/TAC.2015.2482003
54. Kaldmäe, A. and Kotta, Ü. Disturbance decoupling by measurement feedback. In The 19th IFAC World Congress. Cape Town, South Africa, 2014, 7735–7740.
https://doi.org/10.3182/20140824-6-za-1003.00216
55. Kaldmäe, A. and Kotta, Ü. Input–output decoupling of discrete-time nonlinear systems by dynamic measurement feedback. Eur. J. Control, 2017, 34, 31–38.
https://doi.org/10.1016/j.ejcon.2016.12.004
56. Kaldmäe, A. and Kotta, Ü. Input–output linearization of discrete-time systems by dynamic output feedback. Eur. J. Control, 2014, 20(2), 73–78.
https://doi.org/10.1016/j.ejcon.2013.12.004
57. Kaldmäe, A., Kotta, Ü., Jiang, B., Shumsky, A., and Zhirabok, A. Faulty plant reconfiguration based on disturbance decoupling methods. Asian J. Control, 2016, 18(3), 858–867.
https://doi.org/10.1002/asjc.1185
58. Kaldmäe, A., Kotta, Ü., Shumsky, A., and Zhirabok, A. Measurement feedback disturbance decoupling in discrete-time nonlinear systems. Automatica, 2013, 49(9), 2887–2891.
https://doi.org/10.1016/j.automatica.2013.06.013
59. Kaldmäe, A., Kotta, Ü., Shumsky, A., and Zhirabok, A. Measurement feedback disturbance decoupling in discrete-event systems. Int. J. Robust Nonlin. Contr., 2015, 25(17), 3330–3348.
https://doi.org/10.1002/rnc.3265
60. Kaldmäe, A. and Moog, C. H. Disturbance decoupling of time delay systems. Asian J. Control, 2016, 18(3), 1130–1134.
https://doi.org/10.1002/asjc.1169
61. Kaparin, V. and Kotta, Ü. Transformation of nonlinear state equations into the observer form: necessary and sufficient conditions in terms of one-forms. Kybernetika, 2015, 51(1), 36–58.
https://doi.org/10.14736/kyb-2015-1-0036
62. Kaparin, V., Kotta, Ü., and Mullari, T. Extended observer form: simple existence conditions. Int. J. Control, 2013, 86(5), 794–803.
https://doi.org/10.1080/00207179.2012.760048
63. Kaparin, V., Kotta, Ü., and Wyrwas, M. Observable space of the nonlinear control system on a homogeneous time scale. Proc. Estonian Acad. Sci., 2014, 63(1), 11–25.
https://doi.org/10.3176/proc.2014.1.04
64. Kawano, Y. and Kotta, Ü. On integrability of observable space for discrete-time polynomial control systems. IEEE Trans. Autom. Control, 2015, 60(7), 1987–1991.
https://doi.org/10.1109/TAC.2014.2365685
65. Kawano, Y. and Kotta, Ü. Single-experiment observability decomposition of discrete-time analytic systems. Syst. Control Lett., 2016, 97, 193–199.
https://doi.org/10.1016/j.sysconle.2016.09.016
66. Keerthi, S. S., Sancheti, N. K., and Dattasharma, A. Transversality theorem: a useful tool for establishing genericity. In The 31st IEEE Conference on Decision and Control. 1992, 96–101.
https://doi.org/10.1109/cdc.1992.371783
67. Kotta, Ü. Decoupling of discrete-time nonlinear systems by minimal order dynamic state feedback. Proc. Estonian Acad. Sci. Phys. Math., 1993, 42(4), 308–319.
68. Kotta, Ü. Essential orders for discrete-time nonlinear system. Proc. Estonian Acad. Sci. Phys. Math., 1993, 42(3), 229–235.
69. Kotta, Ü. Comments on “On the discrete-time normal form”. IEEE Trans. Autom. Control, 2000, 45(11), 2197.
https://doi.org/10.1109/9.887696
70. Kotta, Ü. Decomposition of discrete-time nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math., 2005, 54(3), 154–161.
71. Kotta, Ü., Bartosiewicz, Z., Nõmm, S., and Pawłuszewicz, E. Linear input-output equivalence and row reducedness of discrete-time nonlinear systems. IEEE Trans. Autom. Control, 2011, 56(6), 1421–1426.
https://doi.org/10.1109/TAC.2011.2112430
72. Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E., andWyrwas, M. Irreducibility, reduction and transfer equivalence of nonlinear inputoutput equations on homogeneous time scales. Syst. Control Lett., 2009, 58(9), 646–651.
https://doi.org/10.1016/j.sysconle.2009.04.006
73. Kotta, Ü., Kotta, P., and Halás, M. Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika, 2010, 46(5), 831–849.
74. Kotta, Ü., Kotta, P., Tõnso, M., and Zinober, A. On classical state space realisability of quadratic input-output differential equations. Int. J. Control, 2009, 82(7), 1212–1218.
https://doi.org/10.1080/00207170802460040
75. Kotta, Ü., Moog, C. H., and Tõnso, M. The minimal time-varying realization of a nonlinear time-invariant system. In The 9th IFAC Symposium on Nonlinear Control Systems. Toulouse, France, 2013, 518–523.
https://doi.org/10.3182/20130904-3-fr-2041.00080
76. Kotta, Ü. and Mullari, T. Equivalence of different realization methods for higher order nonlinear input-output differential equations. Eur. J. Control, 2005, 11(3), 185–193.
https://doi.org/10.3166/ejc.11.185-193
77. Kotta, Ü., Mullari, T., Zinober, A. S. I., and Kotta, P. State space realization of bilinear continuous-time input-output equations. Int. J. Control, 2007, 80(10), 1607–1615.
https://doi.org/10.1080/00207170701447106
78. Kotta, Ü., Nõmm, S., and Zinober, A. S. I. Classical state space realizability of input-output bilinear models. Int. J. Control, 2003, 76(12), 1224–1232.
https://doi.org/10.1080/0020717031000139240
79. Kotta, Ü ., Rehák, B., and Wyrwas, M. On submersivity assumption for nonlinear control systems on homogeneous time scales. Proc. Estonian Acad. Sci., 2011, 60(1), 25–37.
https://doi.org/10.3176/proc.2011.1.03
80. Kotta, Ü. and Sadegh, N. Two approaches for state space realization of NARMA models: bridging the gap. Math. Comp. Model. Dyn. Syst., 2002, 8(1), 21–32.
https://doi.org/10.1076/mcmd.8.1.21.8340
81. Kotta, Ü., Schlacher, K., and Tõnso, M. Relaxing realizability conditions for discrete-time nonlinear systems. Automatica, 2015, 58, 67–71.
https://doi.org/10.1016/j.automatica.2015.05.007
82. Kotta, Ü. and Tõnso, M. Realization of discrete-time nonlinear input-output equations: polynomial approach. Automatica, 2012, 48(2), 255–262.
https://doi.org/10.1016/j.automatica.2011.07.010
83. Kotta, Ü. and Tõnso, M. Realisation of linear time-varying systems. Int. J. Control, 2016, 1–6,
http://dx.doi.org/10.1080/00207179.2016.1230891.
84. Kotta, Ü., Tõnso, M., and Kawano, Y. Polynomial accessibility condition for the multi-input multi-output nonlinear control system. Proc. Estonian Acad. Sci., 2014, 63(2), 136–150.
https://doi.org/10.3176/proc.2014.2.04
85. Kotta, Ü., Tõnso, M., Shumsky, A. Y., and Zhirabok, A. N. Feedback linearization and lattice theory. Syst. Control Lett., 2013, 62(3), 248–255.
https://doi.org/10.1016/j.sysconle.2012.11.014
86. Kotta, Ü., Zinober, A. S. I., and Liu, P. Transfer equivalence and realization of nonlinear higher order input-output difference equations. Automatica, 2001, 37(11), 1771–1778.
https://doi.org/10.1016/S0005-1098(01)00144-3
87. Kucera, V. Discrete Linear Control: The Polynomial Equation Approach. John Wiley & Sons Ltd, New York, USA, 1979.
88. Mahadevan, R. and Doyle, F. J. III. Efficient optimization approaches to nonlinear model predictive control. Int. J. Robust Nonlin. Contr., 2003, 13, 309–329.
https://doi.org/10.1002/rnc.820
89. Márquez-Martínez, L. A. Note sur l’accessibilité des systèmes non linéaires à retards. Comptes Rendus Acad. Sci., 1999, 329(6), 545–550.
https://doi.org/10.1016/s0764-4442(00)80059-2
90. Márquez-Martínez, L. A. and Moog, C. H. Disturbance decoupling for nonlinear time-delay systems. Asian J. Control, 2007, 9(2), 190–194.
https://doi.org/10.1111/j.1934-6093.2007.tb00322.x
91. Márquez-Martínez, L. A. and Moog, C. H. New insights on the analysis of nonlinear time-delay systems: application to the triangular equivalence. Syst. Control Lett., 2007, 56(2), 133–140.
https://doi.org/10.1016/j.sysconle.2006.08.004
92. Middleton, R. H. and Goodwin, G. C. Digital Control and Estimation: A Unified Approach. Prentice Hall, New Jersey, USA, 1990.
93. Moog, C. H., Castro-Linares, R., Velasco-Villa, M., and Márquez-Martínez, L. A. Disturbance decoupling for time-delay nonlinear systems. IEEE Trans. Autom. Control, 2000, 45(2), 305–309.
https://doi.org/10.1109/9.839954
94. Mullari, T. and Kotta, Ü. Transformation the nonlinear system into the observer form: simplification and extension. Eur. J. Control, 2009, 15(2), 177–183.
https://doi.org/10.3166/ejc.15.177-183
95. Mullari, T., Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., and Moog, C. H. Forward and backward shifts of vector fields: towards the dual algebraic framework. IEEE Trans. Autom. Control, 2017, DOI:10.1109/TAC.2016.2608718.
https://doi.org/10.1109/TAC.2016.2608718
96. Mullari, T., Kotta, Ü., Nõmm, S., and Tõnso, M. Realization of nonlinear composite systems. Control Cybern., 2006, 35(4), 905–921.
97. Mullari, T., Kotta, Ü., and Tõnso, M. Static state feedback linearizability: relationship between two methods. Proc. Estonian Acad. Sci., 2011, 60(2), 121–135.
https://doi.org/10.3176/proc.2011.2.07
98. Nijmeijer, H. Observability of autonomous discrete time non-linear systems: a geometric approach. Int. J. Control, 1982, 36(5), 867–874.
https://doi.org/10.1080/00207178208932936
99. Nijmeijer, H. and van der Schaft, A. J. Nonlinear Dynamical Control Systems. Springer-Verlag, New York, USA, 1990.
https://doi.org/10.1007/978-1-4757-2101-0
100. Nõmm, S. and Moog, C. H. Further results on identifiability of discrete-time nonlinear systems. Automatica, 2016, 68(6), 69–74.
https://doi.org/10.1016/j.automatica.2016.01.054
101. Ondera, M. Computer-Aided Design of Nonlinear Systems and their Generalized Transfer Functions. Ph.D. thesis, Slovak University of Technology, Bratislava, 2008.
102. Ondera, M. and Halás, M. Computer implementation of some recent developments related to generalized transfer functions. In The 18th IFAC World Congress. Milano, Italy, 2011, 11012–11017.
https://doi.org/10.3182/20110828-6-it-1002.01644
103. Ore, O. Theory of non-commutative polynomials. Ann. Math., 1933, 34, 480–508.
https://doi.org/10.2307/1968173
104. Shumsky, A. and Zhirabok, A. Redundancy relations for fault diagnosis in hybrid systems. In The 8th IFAC International Symposium on Fault Detection, Supervision and Safety for Technical Processes. Mexico City, Mexico, 2012, 1226–1231.
https://doi.org/10.3182/20120829-3-mx-2028.00039
105. Shumsky, A. Y. Fault diagnosis of sensors in autonomous underwater vehicle: adaptive quasi-linear parity relations method. In The 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Process. Beijing, China, 2006, 415–420.
https://doi.org/10.3182/20060829-4-cn-2909.00063
106. Silva, P. S. P. D. Some remarks on static-feedback linearization for time-varying systems. Automatica, 2008, 44(12), 3219–3221.
https://doi.org/10.1016/j.automatica.2008.10.001
107. Willems, J. C. The behavioral approach to open and interconnected systems. IEEE Control Syst. Mag., 2007, 27(6), 46–99.
https://doi.org/10.1109/MCS.2007.906923
108. Xia, X., Márquez-Martínez, L. A., Zagalak, P., and Moog, C. H. Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica, 2002, 38(9), 1549–1555.
https://doi.org/10.1016/S0005-1098(02)00051-1
109. Zheng, Y. and Cao, L. Transfer function description for nonlinear systems. J. East China Normal Univ., 1995, 2, 15–26.
110. Zhirabok, A. and Shumsky, A. The Algebraic Methods for the Analysis of Nonlinear Dynamic Systems. Dalnauka, Vladivostok, 2008 (in Russian).