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Abstract. The paper gives an overview of an algebraic approach based on differential 1-forms, developed for the study of nonlinear
control systems. The purpose of the paper is to describe the approach, comment on the necessary assumptions made, and demonstrate the
effectiveness and limitations of the approach. Two very important aspects of the approach are as follows: (1) one works with differentials
and not with functions, meaning that computations are, up to integration similar to the linear case and (2) the approach is used to study
generic properties of control systems that hold for almost every point of a suitable domain. The first point means that solutions to various
problems are found in terms of 1-forms and the integrability properties allow transformation of the solution back to the level of functions.
The study of generic properties simplifies the presentation of the solutions, since there is no need to specify the working point and its
neighbourhood. Finally, the paper includes an extensive list of publications, where the approach of 1-forms is studied or applied to solve
different control problems.
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1. INTRODUCTION

Today nonlinearity plays an essential role in control systems theory. Both the geometric and algebraic methods
have progressed substantially, providing crucial conceptual tools addressing system modelling, analysis, and
control design. Among them the algebraic approach of differential 1-forms is transparent and intuitively more
understandable than the most popular differential geometric approach that is based on complex geometric objects.
The approach is based on the idea of working with differentials of nonlinear system equations rather than with
equations themselves. Then the vector spaces of 1-forms over suitable differential/difference fields of nonlinear
functions may be constructed. Thus, further analysis is very similar to that of the linear case except that the
coefficients of the vectors are now meromorphic functions in independent system variables and not real numbers
as in the linear theory. The benefit of such a framework is that the theoretical results are conceptually very
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similar to those in linear control theory though the computations are different. Since the ultimate goal is to
study nonlinear systems, and not the globally linearized equations, the conditions similar to linear theory are
accompanied with certain integrability conditions. In some rare cases it can be theoretically proved that those
integrability conditions are always satisfied. This happens, for instance, in system reduction and in accessibility
studies [33]. The framework developed suggests a wide range of mathematical tools and a systematic way to
handle different control problems from the unified viewpoint. Moreover, upon the 1-forms approach polynomial
methods have been developed. The tools are developed to address continuous- and discrete-time systems as well
as systems, described on time scales. The latter allows handling also non-uniformly sampled control systems.
Some results are also developed for nonlinear systems with delays.

The algebraic approach has been successfully applied to address a great number of structural control problems
in nonlinear control. The methods based on differential 1-forms are strongly model-based, relying, in fact, in the
majority of cases on direct cancellation. This approach is especially well-suited for checking generic solvability
conditions of various problems. However, in order to find the control laws, at the last step one has to integrate
certain sets of differential 1-forms to get back to the level of equations. For this reason the solvability conditions
typically include certain integrability assumptions that in the linear case are always satisfied. Moreover, the
integration of (in principle integrable) differential forms (or sets of such forms) is known to be a difficult task and
in many cases no closed-form solution exists in terms of elementary functions.

The paper aims to give a tutorial overview with a focus on the word ‘overview’. The adjective ‘tutorial’
means that different technical assumptions made in the approach and the necessity of their introduction are
explained. It also shows, based on some simple examples, what happens if these assumptions do not hold.
Sometimes at the expense of more complex theory one can relax some assumptions [41]; in the other cases it is
not possible. Comparisons with alternative approaches in nonlinear control are briefly discussed with respective
advantages/disadvantages. A number of future research directions are identified. The paper focuses on discrete-
time systems for a number of reasons. First, they are less studied than continuous-time systems1. Second, the
discrete-time case needs some additional assumptions, which we want to explain in detail and the construction of
the inversive difference field is more complex.

Note that most results are obtained for time-invariant nonlinear systems, only few results have been obtained
for time-varying nonlinear systems [75,106], or nonlinear time-delay systems (see Subsection 8.4). The most
important solutions, given in terms of 1-forms, have been implemented in a Mathematica-based symbolic
software NLControl [49] (see [20] for a brief overview of the software package).

The paper is organized as follows. In Section 2 the basic ideas of the approach are described for discrete-time
systems and the submersivity assumption is explained. Sections 3 and 4 focus, respectively, on the ways one
moves from functions to 1-forms and vice versa. Section 5 explains different aspects of the generic approach. In
Section 6, based on the difference field and forward-shift operator, the polynomial tools are constructed for the
study of discrete-time systems. Unification of the study of discrete- and continuous-time cases is described in
Section 7. The rest of the paper is devoted to an overview of the problems solved by the approach (Section 8)
and comparing different approaches/cases (Section 9). Finally, the conclusions are drawn and open problems and
difficulties are discussed.

2. CONTROL SYSTEM

In this section the classes of nonlinear control systems addressed within the algebraic approach are defined.
Both the state-space and the input-output (i/o) representations of the system are given. Note that throughout
the paper we use the abridged notations. First, in order to simplify the exposition, we leave out the time
argument t, so ξ := ξ (t). Moreover, we use symbols +, −, and [k] instead of the shifted time arguments, so
ξ+ := ξ (t +1), ξ− := ξ (t −1), and ξ [k] := ξ (t + k).

The approach requires that the system equations should be described by analytic functions. That is,
smoothness is not enough. The choice of analytic functions allows us to define the ring A that is an integral

1 For the continuous-time case there exists a good book on this approach [33].
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domain, being the cornerstone of the approach. Note that, in general, the ring A , associated to the control
system, is the quotient ring (ring of cosets) of analytic functions, defined by the difference ideal, generated
by system equations. Recall that the integral domain A can be naturally enlarged, i.e., embedded in a larger
algebraic object, called its field of fractions K such that every element of K can be expressed as a fraction
(quotient) a−1b of two elements of A , whenever a ̸= 0. The elements of K are meromorphic functions. The use
of meromorphic functions is essential for carrying out division in computations. The use of the other functions, for
instance smooth, will result in a non-integral domain with loss of many useful properties. Moreover, one defines
also the skew polynomial ring of shift (or difference, or differential in the continuous-time case) operators over
the field K . For this ring to be an integral domain, the ring A has to be an integral domain. The term ‘skew’
means that the shift (or difference, or derivative) operator does not commute with every element in the coefficient
field.

Additionally, the use of analytic or meromorphic functions allows us to study the generic properties of the
systems (see more in Section 5). This means that the properties hold on some open and dense subsets of suitable
domains if they hold at some point of the domain. That is, generic properties hold in almost all situations.

2.1. State-space description

Consider a multi-input multi-output (MIMO) nonlinear discrete-time dynamical system, described by the state
equations

x(t +1) = f (x(t),u(t)),
y(t) = h(x(t)).

(1)

In (1), x(t) ∈ X ⊂ Rn is a state vector, u(t) ∈ U ⊂ Rm is an input vector, y(t) ∈ Y ⊂ Rp is an output vector,
and X , U , Y are open subsets. Moreover, f : X ×U → X and h : X → Y are assumed to be meromorphic
functions. Assume that for (x(t),u(t)) ∈ X ×U , also f (x(t),u(t)) ∈ X . Additionally, we assume that

rankK
∂ f (·)

∂u
= m (2)

and

rankK
∂h(·)

∂x
= p. (3)

These assumptions are not restrictive; they only mean that all inputs and outputs, respectively, are independent.

2.2. Input-output description

Throughout the paper it is assumed that the indices i, j = 1, . . . , p and κ = 1, . . . ,m. Consider a MIMO nonlinear
system, described by the set of difference equations

yi(t +ni) = ϕi (y j(t),y j(t +1), . . . ,y j(t +ni j),uκ(t),uκ(t +1), . . . ,uκ(t + siκ)) . (4)

In (4), ϕi are supposed to be meromorphic functions. Let n := n1 + · · ·+np and sκ := max1≤i≤p{siκ} and assume
that the indices in (4) are supposed to satisfy the relations

n1 ≤ ·· · ≤ np, ni j < n j, siκ < ni,

ni j < ni, j ≤ i, ni j ≤ ni, j > i.
(5)

The conditions (5) are mostly introduced for technical reasons. Under such conditions the forward shift operator,
defined by equations and applied to system variables, can be explicitly computed and independent system
variables determined. However, in the case when the equations are defined by the set of implicit i/o difference
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equations, this is not so simple. Since our long-term goal was to develop the Mathematica-based symbolic
software, the computability aspect is important for us. Finally, let us mention that since the systems of the form
(4) are often obtained as a result of the identification process, it is natural to select a model structure class from
the following criterion – suitability for control and ease of model development.

The restrictions (5) mean that Eqs (4) are assumed to be in the so-called Popov form [10]. This guarantees
that the indices ni are unique up to permutations. Note that under mild conditions, one can always transform an
arbitrary set of i/o equations, at least locally, into the Popov form.

2.3. Submersivity assumption

The submersivity assumption means that in (1),

rankK

[
∂ f (·)
∂ (x,u)

]
= n (6)

or in (4),

rankK

[
∂ϕ(·)
∂ (y,u)

]
= p, (7)

where y = (y1, . . . ,yp)
T, u = (u1, . . . ,um)

T, and ϕ = (ϕ1, . . . ,ϕp)
T. Analogous conditions for systems defined on

time scales having a more complex form are given in [79].
The submersivity property plays a crucial role in the study of discrete-time nonlinear control systems,

described either in terms of the shift or difference operator. This concept was introduced into the nonlinear
control theory in [41] and since then this assumption has been made in the majority of papers on discrete-time
nonlinear control systems. Especially, this assumption is vital in the algebraic approach based on differential
forms. Under the submersivity assumption the backward shift, playing an important role in the above approach,
is a well-defined operator and the inversive closure of the difference field, defined by the control system can
be constructed. The submersivity property guarantees that independent variables remain independent under the
action of shift operator σ . In [46] it was proven that system (1) with rational f , is submersive if and only if the
ideal, defined by the control system, is prime, proper, and reflexive. Finally, note that the submersivity assumption
is not restrictive, since it is a necessary condition for the system to be generically accessible (controllable) [41].

In principle, one may relax the submersivity condition as shown in [41], but this can be done at the expense of
much technical complexity. Sometimes a more restrictive condition of drift invertibility (alternatively called the
reversibility of the map f (·,u)) is assumed [27], i.e., rankK

[
∂ f
∂x

]
= n. However, as claimed (though not proven)

in [28], under the submersivity assumption the system can be transformed via static state feedback into the form
with invertible drift. Finally, note that in the linear case one works with the 1-forms, defined over the inversive
difference field of real numbers. Thus, there is no need to extend the difference field K such that the extended
field would be inversive, for which the submersivity assumption is necessary. In other words, the backward-shift
of a constant (real number) is always the same constant and in the linear case there is no need to define the
backward-shifts of system variables.

2.4. Difference field

In this subsection the construction of the inversive difference field, defined by system equations (4), is shown in
detail. The case, related to state equations is commented briefly at the end of the subsection.

Let K denote the field of meromorphic functions in a finite number of independent system variables from
the infinite set

C =
{

yi,y
[1]
i , . . . ,y[ni−1]

i ,u[l]κ , l ≥ 0
}
.
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Observe that y[ki]
i , ki ≥ ni, i = 1, . . . , p are dependent variables since they can be computed from Eqs (4). Note

that one has to distinguish between signals y(t) or u(t) as time functions in (4) and signal variables y or u in C
which are just variables that can take real values and are not considered to be functions of time. The field K is
the field of meromorphic functions of variables y,u and their shifts. The forward-shift operator σ : K → K is
defined as follows:

σ(F)
(

yi,y
[1]
i , . . . ,y[ni−1]

i ,uκ ,u
[1]
κ , . . . ,u[l]κ

)
:= F

(
y[1]i ,y[2]i , . . . ,y[ni]

i ,u[1]κ ,u[2]κ , . . . ,u[l+1]
κ

)
, (8)

meaning that σ is applied to each argument of the function F , replacing the arguments by their forward shifts
except for y[ni]

i , which as the dependent variables have to be replaced by ϕi(·) from system equations (4). Of
course, the forward shift of a constant function c is the same function: σc = c.

Under the submersivity assumption (7) the operator σ is an injective endomorphism and the pair (K ,σ)
a difference field (see2 [32]). The inverse of σ , denoted by σ−1, is called the backward shift, and defined
analogously to (8). In general, the field K is not inversive, meaning that some ζ ∈ K may not have pre-
image in K , i.e., σ−1ζ ̸∈ K . However, under condition (7), there exists, up to an isomorphism, a unique
difference overfield K ∗, called the inversive closure of K such that K ⊂ K ∗ and the extension of σ to K ∗ is
an automorphism (see [32]). A detailed construction of K ∗ is given, for instance, in [4] and [46].

The construction of K ∗ requires the rule to compute the k-step backward shifts σ−k, k ≥ 1 of independent
system variables. Note that the independent variables of the field K are given by the elements of the set
C , whereas the inversive closure K ∗ contains, in addition, the variables σ−ιyi and σ−ιuκ , ι ≥ 1, where σ−ι

means the ι-time application of the backward-shift operator σ−1. However, not all of those new variables
are independent. For simplicity reasons we explain the situation for the single-input single-output case, when
p = m = 1. The important point in the construction of K ∗ is that, in order to go backwards in time, one has
two possibilities: solving Eq. (4), either with respect to y(t) or with respect to u(t). From (4), one can readily
calculate the backward shifts of variable y, if the condition ∂ϕ/∂y ̸≡ 0 holds and σ−ku are given. This can be
done by solving Eq. (4) with respect to y and applying the backward shift to the result the required number of
times. This shows that σ−ky for k ≥ 1 must not be considered as independent variables of the field extension
K ∗ in the sense that they can be expressed as functions of the other variables such as σ−ku and those from C .
Note that an alternative possibility is specifying σ−ky as the independent variables of the field extension K ∗.
Then, under the assumption that ∂ϕ/∂u ̸≡ 0 Eq. (4) can be solved for u and shifted back to compute σ−ku as
dependent variables of K ∗. To conclude, we have two possibilities of solving Eq. (4), namely with respect to y
or u, meaning that either σ−ku or σ−ky for k ≥ 1, respectively, have to be chosen as the independent variables for
the construction of the inversive closure K ∗. Of course, in the MIMO case, there are more options. Although
the choice of independent variables is not unique, each possible choice brings up a field extension of K which
is isomorphic to K ∗. There are no ‘good’ or ‘bad’ choices in the sense that all possible choices that define the
field extension K ∗ are suitable. The only difference is that for some choices the computations are simpler than
for others. Therefore we assume that the inversive closure of the difference field K is given and we will use the
same symbol to denote the difference field and its inversive closure.

In case of state equations (1) the set C reads as

C =
{

xi, i = 1, . . . ,n;u[l]κ , l ≥ 0
}
,

which is extended by variables w[−k], k ≥ 1, to define the field extension K ∗. Here w[−k] is the kth-order backward
shift of a variable w, defined as w = χ(x,u). We have assumed that the map f : X ×U → X can be extended
to f̄ = ( fT,χT)T : X ×U → X ×Rm so that f̄ has a generic (global) analytic inverse, defined on its image
f̄ (X ×U ). If system (1) is drift invertible, one can always take w = u, but in a general case there does not
exist a simple rule for the best choice of χ . One typically prefers the choices of χ , which makes the inverse

2 In general theory [32] the shift operator σ : K → K is only an endomorphism of K , not necessarily injective. In such a case
a∆ = aσ −a = 0 does not imply aσ = a and the equality σ∆ = ∆σ does not necessarily hold.
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of the extended map f̄ as simple as possible. The assumption that f̄ has a global analytic inverse implies that
rankK

[
∂ f̄/∂ (x,u)

]
= n+m. It also implies generic submersivity (6).

The following examples illustrate the necessity of the submersivity assumption and the construction of the
inversive closure K ∗.

Example 1 (non-submersive system). The system

x1(t +1) = x1(t),
x2(t +1) =−x1(t)

(9)

illustrates the type of pathologies that can appear for non-submersive systems. Observe that σ [x1(t)+x2(t)] = 0,
but x1(t)+ x2(t) ̸= 0 necessarily. The shift operator, defined by system (9), is not injective since it does not have
a trivial kernel: aσ = 0 < a = 0. Next, define the function F = 1/(x1 + x2). Straightforward computation shows
that σ(F) is not defined.

Example 2. Consider the system
x1(t +1) = u1(t),
x2(t +1) = x3(t)u1(t),
x3(t +1) = u2(t).

(10)

For system (10), one can readily check that x3(0) = x2(1)/x1(1). Thus, a pre-image in K (through σ ) of x3(0)
is x2(0)/x1(0). Whereas x3(0) has a pre-image in K , x1(0) and x2(0) have none. For this example, K ∗ is the
field of meromorphic functions in the variables {x(0),u(t),w(−l), t ≥ 0, l ≥ 1}, where w(0) = [x1(0),x2(0)].

3. FROM EQUATIONS TO 1-FORMS

The approach is built up by introducing the notion of differential form in an abstract and formal way. In the
rest of the study we are interested in the algebraic properties of differential forms. Consider next the infinite set
of symbols dC = {dξ ,ξ ∈ C } and define E as the vector space over the field K spanned by the elements of
dC : E = spanK dC . Observe that the span is defined over the field of functions, not over R like in the standard
definition of codistribution. Elements of E are called differential 1-forms. For a function F depending on a
finite number of real variables, dF denotes the standard differential of F . In particular, for F ∈ K the operator
d : K → E is defined (in case of system description (4)) as follows:

dF =
p

∑
i=1

ni−1

∑
k=0

∂F

∂y[k]i

dy[k]i +
m

∑
κ=1

∑
l≥0

∂F

∂u[l]κ
du[l]κ +

m

∑
s=1

∑
l≥1

∂F

∂w[−l]
s

dw[−l]
s

or in the case of system description (1) as

dF =
n

∑
i=1

∂F
∂xi

dxi +
m

∑
κ=1

∑
l≥0

∂F

∂u[l]κ
du[l]κ +

m

∑
s=1

∑
l≥1

∂F

∂w[−l]
s

dw[−l]
s .

Taking the total differential of Eqs (1) results in the globally linearized system description, given in terms of
differential 1-forms as

dx+ν =
n

∑
i=1

∂ f
∂xi

dxi +
m

∑
κ=1

∑
l≥0

∂ f

∂u[l]κ
du[l]κ ,

dyµ =
n

∑
i=1

∂h
∂xi

dxi,

(11)

where ν = 1, . . . ,n, µ = 1, . . . , p.
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If ω = ∑ j α jdξ j is a 1-form with α j ∈ K and ξ j ∈ C , then the operator σ : K → K induces the operator
σ : E → E by

σ(ω) = ∑
j

σ(α j)d[σ(ξ j)].

It has been shown that
σ(dα) = d[σ(α)].

Note that the operator σ : E → E is invertible and the inverse operator σ−1 : E → E is defined by

σ−1(ω) = ∑
i

σ−1(α j)d[σ−1(ξ j)].

A vector space, defined in E , is a coordinate-free (algebraic) object, independent of the chosen basis, though
the coordinates of the vector from this vector space can vary from one basis to another. In the algebraic framework
we understand a globally linearized nonlinear system rather as a vector space E and not as a set of differentials
of nonlinear equations. The latter is only representative of the system and varies from one basis to another.
Since many solvability conditions rely on the integrability property of a vector space, these conditions are also
coordinate-free.

Observe that spanK {ω1, . . . ,ωκ} is not a codistribution in the standard sense. When we multiply a 1-form by
a meromorphic function, it may become non-defined at certain points of the space. Thus, there is no simple way
of evaluating spanK {ω1, . . . ,ωκ} at a point. The linear space over K has a fixed dimension. The codistributions
evaluated at a point are linear spaces over R whose dimensions may have variable dimension, depending on the
point and be smaller than the dimension of spanK {ω1, . . . ,ωκ}. However, the dimensions will be generically
equal and one may assume, after a restriction to some open and dense subset, that spanK {ω1, . . . ,ωκ} is a
constant dimensional codistribution. For this reason, the subspaces of 1-forms are not dual objects to distribution,
in the strict sense. However, in [95] the vector space of vector fields over K is constructed which can be
understood as a dual object to the subspace of 1-forms. This vector space is defined by all possible linear
combinations of ∂/∂xi and ∂/∂u j, i = 1, . . . ,n, j = 1, . . . ,m, over the field K . Then, the concepts of forward
and backward shifts of vector fields are defined and explicit formulas are given for their computation. In this way
one can construct a geometric approach for discrete-time systems, which is dual to the approach of 1-forms.

3.1. Ordinary differentials versus Kähler differentials

There exist two main approaches to compute differentials of system variables. The first is the concept of Kähler
differential introduced by Johnson [52] and used by Fliess’ school [38]. This is a very natural choice from a purely
algebraic point of view. Kähler differentials permit us to translate problems from algebra into linear algebra. The
second approach is to use ordinary differential as known from the college calculus, as done in [33]. A natural
question to be asked is whether these two concepts, Kähler differentials and ordinary differentials, coincide or
not. The paper [39] shows that if the attention is restricted to polynomial, rational or algebraic functions, both
concepts coincide. The ordinary differentials are relevant (Kähler differentials are not suitable) in cases when the
functions in system descriptions under study or functions in problem solutions include transcendental functions.
In principle, Kähler differentials can also be defined for such systems, but at the expense of introducing new
variables and the rules for computing their differentials. For instance, even though one can introduce a new
variable expx, algebraically independent of x over R, its Kähler differential does not satisfy the relation

dexpx = expx dx (12)

unless we postulate this to hold using the quotient spaces modulo (12) since dx and dexpx are linearly independent
over R(x,expx).
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4. FROM 1-FORMS TO FUNCTIONS

Below, the symbol dω denotes the exterior derivative of the 1-form ω and ∧ means the exterior or wedge product.
One says that ω ∈ E is an exact 1-form if ω = dζ for some ζ ∈ K . A 1-form ω for which dω = 0 is said to

be closed. Note that exact 1-forms are closed, whereas closed 1-forms are only locally exact. A 1-form is called
integrable if there exists an integrating factor λ ∈ K such that λω is an exact 1-form. The integrability of a
1-form can be checked by the Frobenius theorem below.

Theorem 1 ([30]). Let ω1, . . . ,ων be 1-forms in E , linearly independent in a neighbourhood of a certain point.
The system of 1-forms ω1, . . . ,ων is completely integrable in this neighbourhood if and only if for all ℓ= 1, . . . ,ν

dωℓ∧ω1 ∧·· ·∧ων = 0.

The Frobenius theorem on which we rely and which holds for C∞ functions is a local statement, valid in a
neighbourhood of each point. It guarantees the integrability of a constant dimensional codistribution, generated
by 1-forms. The functions whose differentials generate the codistribution are defined only locally. More precisely,
they are defined at some neighbourhood of almost every point of the domain. That is, in different regions of the
domain the integration may result in different functions. This is a kind of ‘local generic’ feature. That is, one
cannot claim the existence of a global solution that is defined almost everywhere since there does not exist the
generic version of the Frobenius theorem.

The following example demonstrates the importance of constructing and utilizing the extended field K ∗ in a
correct way.

Example 3. Consider the system
y(t +2) = y(t)u(t +1)

and
ω = y[−1]dy[1]+du. (13)

Note that in this system y[−1] has to be considered as a dependent variable and should be replaced by y[1]/u. In
doing so, the 1-form ω takes the form

ω =
y[1]

u
dy[1]+du

and is obviously integrable, whereas if we would erroneously treat y[−1] as an independent element of K ∗, the
1-form (13) would not be integrable.

In most cases one needs complete integrability, which means that the vector space of 1-forms can be generated
locally by exact 1-forms. However, in some cases, partial integrability is enough, when only some generating
1-forms can be made exact. Another type of incomplete integrability is constrained integrability when the space
of 1-forms is integrable only for a fixed value of some variable. Such aspect is important in the studies of
singularities.

5. GENERIC APPROACH

The algebraic approach of 1-forms makes generic assumptions (for instance, submersivity assumption in
Subsection 2.3) and suggests generic solutions to problems, i.e., the solutions valid for almost every point of the
suitable domains of definition. The main reason to do so is to focus on the key aspects of the solution and omit
the possible singularities. The study of generic properties allows expressing the solutions in a more compact way,
since there is no need to specify the working point and its neighbourhood like in classical approaches [50,99].
Since ranks and dimensions of vector spaces are defined over the field of functions, singularities do not show up
explicitly, and need additional attention in later analysis. In practice, once the system equations are fixed, these
matters can be addressed quite easily. The generic approach ignores the distinction between local and global.
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Typically, the 1-forms and functions are defined not on Rn but on open and dense3 regions in Rn and the stated
relations among them hold only on open subregions.

There exist two reasonable but different definitions of genericity in the literature and one does not imply
the other [66]. One says that P is generic in Y if a property P(y) holds for almost all y in Y to mean that the
set {y ∈ Y : P(y) does not hold} has zero (Lebesque) measure. The other definition calls a property generic if
{y ∈ Y : P(y) holds} contains an open and dense set. We rely on the second definition. That is, we are interested
in the properties that hold on open and dense subsets of suitable domains of definitions, provided they hold at
some point of such domains.

Let us mention that the concept of generic property does not make sense, in general, for systems defined by
smooth functions, whereas it makes sense in case of analytic and meromorphic functions. The reason is that there
exist smooth functions being neither generically equal to zero nor different from zero (see Example 4 below).
Non-zero analytic functions (defined on Rn) are different from zero at the points of an open and dense subset of
Rn, or said alternatively, are generically different from zero. Therefore, it makes sense to define the generic rank
of the matrix whose entries are analytic functions.

Since we look at dimensions (or ranks) over a field of functions, not over R, there is no argument either about
the points where to evaluate dimensions or about constant dimensionality of codistributions. A generic rank is a
maximal rank on an open and dense set. The rank may drop on some subset. Reducing the set, one can always
achieve a constant rank over R.

In the example below we will show why we do not consider smooth non-analytic functions.

Example 4. Consider the system
x1(t +1) = x1(t)+F(x2(t)),
x2(t +1) = u(t),

(14)

where F(x2(t))= exp−
1

x2(t) , when x2(t)> 0 and F(x2(t))= 0 elsewhere. Note that F(·) is smooth, but not analytic.
For system (14) the ranks of vector spaces and properties are different, when x2(t)> 0 or not. Thus, system (14)
is accessible when x2(t) > 0 and is not accessible otherwise, since then x1(t + 1)− x1(t) = 0. Therefore, we
cannot talk about generic accessibility property.

5.1. From generic to global

The ‘generic focus’ is fine, but it means that something holds on some unspecified open and dense subset of the
entire space. It would be nice if the domain, where the results are valid, could be specified.

One option to do so is to introduce a multiplicative subset S of the difference ring A (ring of analytic
functions in system variables) [71]. This means that 1 is in S , but 0 is not and if a and b belong to S , so
does ab. Then S −1A denotes the localization of A with respect to S that consists of meromorphic functions
whose denominators belong to S (are not equal to zero). When we start, some functions in system equations
may have denominators that, together with their forward and backward shifts, should be included in the set S .
If the functions are analytic, then one may set S := {1}, meaning that S −1A = A . Of course, additional
denominators that show up in the algorithms or computations should also be included in S together with their
shifts and powers. That is, the initial set S has to be extended. The infinite set S can be described by its finite
generator set S0.

By choosing proper S , the calculations can be made global. The domain is the entire space with removed
zeros of functions from S . This set is also open and dense, but specified by S . However, there is a small
problem. Such space is in principle infinite dimensional and without speaking its topology, the meaning of open
and dense is not clear. One can overcome this difficulty by restricting oneself to finitely many variables, which
makes the space finite-dimensional. Of course, it would probably be tedious to describe precisely the variables
to which one must restrict oneself.

3 Note that a meromorphic function is analytic on an open and dense set. Only open is not enough because (sometimes) one has to add
the functions with different domains, and may end up with an empty domain of the sum.
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6. POLYNOMIAL TOOLS

The polynomial approach [24,87] has proven to be very powerful for the analysis and synthesis of linear time-
invariant systems. In this approach the polynomial indeterminate is interpreted as the derivative or shift operator.
Later, this approach was generalized to linear time-varying systems, both continuous- and discrete-time (see, e.g.,
[25,51]). In this extension, the polynomial coefficients are no more constants but functions of time.

The difference field (K ,σ) induces a non-commutative skew polynomial ring, denoted by K [z;σ ]. An
element of K [z;σ ] is a polynomial of the form

p =
γ

∑
i=0

piz
i,

where pi ∈K , i = 0, . . . ,γ , and z denotes the polynomial indeterminate. The multiplication in K [z;σ ] is defined
by the rule

zφ = σ(φ)z

for a function φ ∈ K , whereas addition is defined in a usual way. Recall that the ring K [z;σ ]
• is an integral domain (i.e., it does not contain zero divisors; see Section 2);
• satisfies the left Ore condition, i.e., for all non-zero p,q ∈ K [z;σ ] there exist non-zero p

′
,q

′ ∈ K [z;σ ]
such that p

′
q = q

′
p, since σ is an automorphism [37].

Define
zkdy j := dy[k]j , z lduκ := du[l]κ (15)

for k, l ≥ 0 to represent the nonlinear system (4) in terms of two polynomial matrices. Differentiate (4) to obtain
the infinitesimal system description

dy[ni]
i −

p

∑
j=1

ni j

∑
α=0

∂ϕi

∂y[α]
j

dy[α]
j −

m

∑
κ=1

siκ

∑
β=0

∂ϕi

∂u[β ]κ
du[β ]κ = 0 (16)

and use relations (15) to rewrite (16) as
P(z)dy+Q(z)du = 0, (17)

where P(z) and Q(z) are p× p and p×m-dimensional matrices, respectively, whose elements pi j(z),qiκ(z) are
from K [z;σ ] and

pi j(z) = δi jz
ni −

ni j

∑
α=0

pi j,α zα , pi j,α =
∂ϕi

∂y[α]
j

∈ K ,

qiκ(z) =−
siκ

∑
β=0

qiκ ,β zβ , qiκ ,β =
∂ϕi

∂u[β ]κ
∈ K

(18)

with δi j being Kronecker delta. Equation (17) describes the globally linearized system, corresponding to Eqs (4).
Recall that deg(pq) = deg p+degq holds when the polynomial ring K [z;σ ] is an integral domain. Observe

that K [z;σ ] is not a field because z is not a unit in K [z,σ ], i.e., there does not exist a polynomial p such that
z p(z) = 1. In other words, there is no inverse for z in multiplication.

7. UNIFICATION

Many results concerning continuous-time control systems carry over quite easily to the corresponding results
for discrete-time systems, while others seem to be completely different in nature from their continuous-time
counterparts. The mathematical formalisms that unify and extend the study of continuous- and discrete-time cases
help to reveal and explain such discrepancies. Two such formalisms are time scales calculus and pseudo-linear
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algebra. Another practical advantage of the unification of the solutions is in the reduction of the implementation
load since one may now write a single Mathematica or Maple function that covers all the special cases.

The term ‘time scale’ refers to the way dynamic systems behave over time. Most engineering applications
assume time to be either continuous or uniformly discrete, both of which are merged in time scales formalism into
general framework, and follow from the latter as special cases. Moreover, time scales formalism accommodates
easily the non-uniformly (irregularly) sampled systems. The main tools of algebraic formalism of differential
1-forms have been extended for systems, defined on homogeneous time scales in [11] and on non-homogeneous
but regular time scales in [12]. Compared with the homogeneous case the main difficulties in the non-
homogeneous case are non-commutativity of delta-derivative and shift operators and the fact that the
additional time variable t appears in the definition of the difference ring. The first difficulty only adds
technical/computational complications. The second difficulty yields that the new variables of the inversive
closure, depending on t, have to be chosen to be smooth at each dense point t of the time scale. However, it
is important to stress that there are no dense points for non-uniformly sampled systems.

Note that homogeneous time scales include continuous-time and uniformly sampled (discrete-time) systems
while a regular time scale includes also non-uniformly sampled systems. The main concept of time scales calculus
is the so-called delta derivative, which is a generalization of both standard time-derivative and the difference
operator. Though time scales calculus accommodates more possibilities, regarding the control theory, the most
important special cases are continuous- and uniformly sampled discrete-time systems that are the examples of
systems, defined on homogeneous time scales. However, the shift operator is not delta-derivative. For this reason
the discrete-time systems addressed within the time scales formalism describe the system equations in terms of
the difference operator and not in terms of the more conventional shift operator. A description of a dynamical
system based on the difference operator is often referred to as delta-domain description [92]. When signals are
sampled at a high sampling rate, the delta-domain models are less sensitive to round-off errors and do not yield
ill-conditioned models like those based on the shift operators [48,92]. Moreover, the delta-domain models are
better linked to the continuous-time plant.

For nonlinear systems, defined on homogeneous time scales, one constructs the ring of skew polynomials
K [z;σ ,∆], where σ is a shift operator (automorphism) like in Section 6 and ∆ is the delta-derivative. Note that
K [z;σ ,∆] is not the left Ore ring unless σ is an automorphism. Polynomial multiplication is defined by the rule

zφ = σ(φ)z +∆(φ).

There exists another formalism, called pseudo-linear algebra, that can handle derivative, difference, and shift
operators. However, this approach is unable to address the non-uniformly sampled systems. Pseudo-linear algebra
[1,26], alternatively called Ore algebra, provides the tools to study the common properties of linear differential,
difference, shift, and other types of operators such as q-shift and q-difference operators, expressed in terms of
skew polynomials. Note that in order to make the tools of pseudo-linear algebra applicable to nonlinear systems,
one has to find first the globally linearized system description in terms of differential 1-forms by applying the
differential operator to system equations. The approach has been used to solve the realization problem [19] and
for the reduction of nonlinear control systems [73].

8. PROBLEMS SOLVED

The approach of differential 1-forms has been used to solve many different problems. Some of them are explained
in detail below, other solutions are just cited in Table 1.

8.1. Realization

Realization, a fundamental problem in nonlinear control theory, consists of transforming the set of i/o equations
(4) into the state-space form (1). The task is motivated by the fact that most of nonlinear control theory is
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Table 1. Solved problems: literature summary

developed for systems described by state equations, while identification/modelling methods result typically in
i/o equations, especially for modern application areas. Constructive solutions for the realization problem are
found. Minimal realization (i.e., realization with the smallest number of state variables) requires, in general,
two steps: system reduction (finding the irreducible i/o representation) and construction of the state coordinates.
Exact formulas in terms of non-commutative polynomials were found for each subtask. The first subtask was
studied separately both for discrete- and continuous-time systems (see [21] and [82], respectively). The paper
[81] demonstrates how a non-realizable set of i/o difference equations can be made realizable by adding a
postcompensator. Note that this is not possible in the continuous-time case [96]. The earlier results on realization
in terms of 1-forms without using polynomial formalism were given in [86] and those using the transfer function
approach in [45]. The results were then generalized for systems defined on homogeneous time scales [23,29],
and finally the solution was extended to time-varying nonlinear systems [75]. Moreover, the results helped us to
advance the realization theory for linear time-varying systems [83] and linear parameter-varying systems [22],
which was quite an untypical situation. Usually the theory for more simple systems is developed first and then
extended to more complex systems. Here the opposite happened. Finally, the results of our theory helped to
work out nice subclasses of bilinear [17,77,78], quadratic [17,74] and general i/o equations [80], each of which
guaranteed to have a state-space description. The relations between different realization methods have been
addressed in [76,80].

8.2. Systems on time scales

Nonlinear control systems on time scales are a novel research topic. When we started investigating it, the
relevant mathematical tools were practically missing. Therefore, we first generalized the algebraic formalism
of differential 1-forms for systems defined on (i) homogeneous time scales [7,8,11] and later to (ii) non-
homogeneous but regular time scales [12]. The application of this formalism has allowed us to study various
control problems for systems, defined on homogeneous time scales such as reduction [72], realization [23,29],
static state feedback linearization [13], checking accessibility [14], and observability [63] properties and
transforming the state equations into certain observer forms [31] that help to develop observers with linear error
dynamics.

8.3. Output feedback

One of the fundamental notions in control is feedback. Most commonly state feedback is used, however,
this requires that the states should be known/measurable, which is often not the case. An alternative is
to use output/measurement feedback. An additional advantage of an output feedback is its applicability to
systems described by i/o equations, which is the only possibility for non-realizable i/o equations. In the
case of output feedback only some functions of states are used; therefore the solvability conditions as well
as solutions themselves are substantially more complicated to find than in the case of state feedback. The
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output feedback has been used to solve the problems like i/o linearization, disturbance, and i/o decoupling.
Necessary and sufficient conditions have been found for i/o linearizability by dynamic output feedback [56].
Then this solution is used to derive sufficient conditions to solve the disturbance decoupling problem by dynamic
output/measurement feedback [54] and necessary and sufficient conditions to solve the i/o decoupling problem
by dynamic output/measurement feedback [55]. In the i/o decoupling problem one searches a feedback such that
every output of the closed-loop system depends exactly on a single input of the closed-loop system.

These results are mostly easily expandable to continuous-time systems. Only the solution to the i/o
linearization problem in [56] needs modifications, since taking time-derivative of a function is more complex
than forward-shifting it. Some preliminary results in continuous-time can be found, for example, in [33].

8.4. Time-delay systems

The method based on differential 1-forms has also been generalized for time-delay systems [91,108], whose
evolution depends not only on the present state, but also on the past values of state variables. A typical assumption
made, when working with time-delay system, is that different delays are commensurable, i.e., multiples of some
fixed minimal delay. This assumption simplifies the study considerably . When talking about time-delay systems,
the majority of papers address continuous-time systems with delays rather than discrete-time systems. The reason
is that under a simple additional assumption (besides commensurable delays), a discrete-time system with delays
can be transformed into a higher dimensional discrete-time system without delays and thus, one can apply the
standard theory to such systems. Therefore, the majority of papers work with time-delay systems of the form

ẋ(t) = f (x(t),x(t −1), . . . ,x(t −D),u(t),u(t −1), . . . ,u(t −D)),

y(t) = h(x(t), . . . ,x(t −D)),
(19)

where D > 0, x(t) ∈ X ⊂ Rn is the state, u(t) ∈ U ⊂ Rm is the control input, and y(t) ∈ Y ⊂ Rp is the output of
the system.

In the case of time-delay systems, one constructs a difference/differential field K , which depends now on
two operators – the time-derivative d/dt and the delay δ , which is similar to the backward-shift operator in the
discrete-time case. Unlike in the discrete-time case, here, one does not need the submersivity assumption, since
one can always construct a well-defined inverse of δ . A major difference from the delay-free case is the fact that,
instead of the field K , one uses a polynomial ring K [ϑ ;δ ], which is constructed similarly to the ring K [z;σ ]
in Section 6. The reason for such a choice is the independence of x and δ (x) in K where the effects of the delays
are thus not taken into consideration. In K [ϑ ;δ ] the variables x and δ (x) are dependent, because d[δ (x)] = ϑdx.
In fact, time-delay systems can be studied as systems over a ring [34].

The most important obstacle in generalizing the approach of differential forms for time-delay systems has
been the problem of the integrability of 1-forms. Namely, time-delay systems are infinite dimensional and
therefore, the standard Frobenius theorem is not applicable. The problem has been studied over 15 years (see
[91,93]), and finally solved in [53]. Another important difficulty in extending the method is the causality issue.
One typically requires that objects should not depend on the future values of the system variables. The source
of causality problems is the fact that not every element in K [ϑ ;δ ] is invertible. This also makes the search for
state/input transformations more complicated.

Compared to the delay-free case, the global linearization approach has been applied much less to the study
of structural control problems of nonlinear time-delay systems. So far, the method has been used to study
the accessibility property [89,108], system inversion [93], the disturbance decoupling problem [60,90,93], the
realization problem [40], and the observability property [93,108] of time-delay systems.

References to some other problems and solutions, based on 1-forms approach, are given in Table 1. The table
does not contain the references cited in the book [33], where many of the problems are studied for continuous-
time systems.
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9. COMPARISONS

In this section comparisons are made with other algebraic methods and also, discrete- and continuous-time cases
are briefly compared. Note that, while the popular differential geometric approach assumes that the system
is described by the state equations, the algebraic method of differential 1-forms can handle also the systems,
defined by their i/o equations.

9.1. Generalized transfer functions

Since K [z;σ ] is an integral domain, it is possible to construct its field of left fractions K (z;σ). Any element of
K (z;σ) can be represented as a left fraction p−1q of two polynomials p,q ∈ K [z;σ ] with p ̸= 0. By definition,
the elements of K (z;σ) are equivalence classes of pairs (q, p) when p ̸= 0 with respect to the equivalence relation
given by (q, p)∼ (q

′
, p

′
) iff p

′
q = q

′
p. Thus, when we write p−1q, we usually mean the whole equivalence class

but use in computations its simplest representative. The computations in the field, in particular addition and
multiplication, do not depend on the representatives. This is similar to working with ordinary fractions. When
we write 1/2 = 2/4, we mean that 1/2 and 2/4 are equivalent, i.e., belong to the same equivalence class.

The concept of transfer function T (z) has been extended for nonlinear systems based on the polynomial
system description (17), and is defined as T (z) = −P−1(z)Q(z). That is, according to this understanding,
the transfer function is a ‘multiple’ object – the whole equivalence class. The concept is sometimes called
‘generalized transfer function’ (GTF). The elements of T (z) belong to K (z;σ). The key tool behind the GTF
is the non-commutative Ore polynomial ring [103]. The concept of GTF was originally introduced in [109] and
independently reintroduced, studied, and used in [42] and [43]. The generalized transfer functions have been
used in the controller design [15,16,44] and in the solution of the realization problem [45].

One aspect needs to be mentioned explicitly. In the linear case a control system can be associated to each
proper rational function, i.e., to each element of K (z;σ). However, things are different in the nonlinear case.
The reason is that the 1-form that corresponds to the element of K (z;σ), is not necessarily integrable. If
the differential form is exact or can be made exact by multiplying it with an integrating factor, i.e., with an
element of K , then there exists a control system that corresponds to this rational function. To conclude, not
every fraction of skew polynomials necessarily represents a control system. This aspect plays a crucial role in
designing compensators.

Ever since the introduction of the GTF it has been obvious that one of its strongest limitations is computational
complexity, and the development of the software tools that would fully eliminate the mathematical burden
involved is almost an impossible task. Even the computation of the GTF itself from the state equations is a
difficult task [102]. It is comparatively easy to eliminate dx from the globally linearized state equations (11)
and as a result, to find the transfer matrix. The latter requires an effective method for inverting Ore polynomial
matrices. The extension of the Gauss–Jordan elimination method for the Ore polynomial case in [101] suffers
from coefficient growth which makes it suitable only for simple systems. Unfortunately, the obtained transfer
matrix depends yet on the state coordinates (unlike in the linear case) that have to be replaced as functions of
inputs, outputs, and their differentials (or shifts). Though always at least locally doable, in many cases the result
cannot be expressed in terms of elementary functions. Moreover, on a global level, state elimination does not
have a unique solution and may be represented by a great number of possible solutions that, besides functions,
depend also on inequations [35]. The construction of the transfer matrix for i/o equations is a much easier task.

However, the troubles do not stop here. In linear transfer matrix-based control design for MIMO systems, a
special form of the transfer matrix, the Smith–McMillan form plays a key role. The reason is that the important
system structural parameters are not available by direct inspection (by looking at the individual elements of the
transfer matrix). The Smith–McMillan form provides a way to determine these structural parameters. The first
step here is to transform the polynomial matrix, associated to the transfer matrix, into the Smith form. This step
was extended for the GTF and implemented in the Mahematica-based package NLControl [18] but the second
step, though theoretically able to be done, would yield the extremely complex expressions of no practical value
already for systems with two inputs and two outputs.
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Some problems have been solved for single-input single-output systems using the transfer function approach
[15,16,44], but in the solution one faces other difficulties. Namely, in the interconnected systems, the initially
independent variables become dependent, and this has to be taken into account in the computation of the GTF.
That is, one cannot handle the transfer functions on their own as self-contained objects, but has to keep in
backstage the knowledge of the equations that define the independent coefficients of the GTF, which is extremely
inconvenient. To a lesser degree it is also important in the algebraic approach of the 1-forms.

Finally, the weak point in the transfer function technique (already present in the case of linear systems) is the
fact that the method is based on the assumption of zero initial conditions. For non-zero initial conditions the nice
transfer function algebra – a field structure – would no longer work [24]. In [24] the authors explain why the
polynomial system theory is preferable. This point is also supported by [107].

9.2. Functions’ algebra

Functions’ algebra is an algebraic method (see [58,85,110]) developed in analogy with the pair algebra of
partitions [47], which was used to describe the behaviour of sequential automaton. The method has shown
some success, solving the problems like disturbance decoupling [57–59], fault diagnosis [104,105], and feedback
linearization [85] for continuous- and discrete-time systems as well as for hybrid and discrete event systems.
When compared with other methods, many solutions look similar for discrete- and continuous-time systems,
only the computations are different for different system classes. Unlike the method based on differential 1-forms,
functions’ algebra operates directly with vector functions depending on the state and input variables. The set S
of all such vector functions is divided into equivalence classes on the basis of a preorder ≤, which defines an
equivalence relation on S. Namely, two vector functions are said to be equivalent if one can write the first vector
function in terms of the second and vice-versa. In functions’ algebra one works with these equivalence classes,
just like in the 1-forms formalism one works with vector spaces without specifying a particular basis of a given
vector space. The set Se of all the equivalence classes forms together with the preorder ≤ (which becomes partial
order on Se) a lattice. The main elements in functions’ algebra are operations × and ⊕, operators m and M. In
a lattice for every two elements α and β there exists a minimal element γ , which is bigger than α and β (with
respect to the partial order ≤) and a maximal element δ , which is smaller than α and β . The operations ⊕ and ×
are defined as α ⊕β = γ and α ×β = δ . Finally, the lattice (Se,≤) is connected to the system dynamics through
a binary relation ∆, which defines the operators m and M. The vector function m(α) represents the maximum
amount of available information on the next state of the system, when knowing α . The vector function M(β )
represents the minimum amount of information necessary to know β on the next state of the system.

As said above, unlike the method based on 1-forms, functions’ algebra operates with vector functions. The
functions’ algebra is, in principal, not limited to analytic or smooth functions, but to make the comparisons with
the 1-forms approach, we consider in the following the case of meromorphic functions. To every vector function
(more precisely to every equivalence class in Se) there corresponds a vector space of 1-forms. If A is a vector
space of 1-forms corresponding to α and B corresponds to β , then the sum A∪B corresponds to α ×β and the
largest integrable subspace of A∩B corresponds to α ⊕β . Interpreting m(α) and M(β ) is more challenging; in
fact, no direct counterparts exist in the method based on 1-forms. If N is the vector space corresponding to the
vector function m(α), then N + is the largest integrable subspace belonging to [A∪ spanK {du}]∩ spanK {dx+}
(in the continuous-time case we take time derivatives instead of shifts). The vector space corresponding to M(β )
is the minimal integrable vector space containing B+∩ spanK {dx}.

In functions’ algebra one assumes that the function f in (1) is surjective, which guarantees that all the
operations are well defined, and the vector function m(α) is uniquely defined. This assumption is equivalent
to the submersivity assumption in the 1-forms approach by definition of a submersion. Compared to the 1-forms
formalism, in functions’ algebra there is no need to worry about integrability, since one works directly with
functions. On the other hand, this makes computations more complex, limiting the use of the approach. For
example, there is no general algorithm for computing m(α) in the continuous-time case. Finally, note that
functions’ algebra has not been used to study systems described by the i/o equations. The method has been built
for systems described by state equations, and to use it for systems described by the i/o equations, at least the
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definition of binary relation ∆ has to be modified. As the 1-forms approach, functions’ algebra suits well for
studying the generic properties of a system.

9.3. Comparison with the continuous-time case

The continuous-time case is easier to address since there is no need to construct the inversive closure, and because
of this, there is no need for submersivity assumption. However, once the proper difference field is constructed, the
solutions of many problems are easier in the discrete-time case. One such problem is system realization, where
instead of Euclidean division or adjoint polynomials, extremely simple cut and shift operator may be applied
[82].

Though many results for continuous- and discrete-time cases are similar, there are a number of important
differences. For instance, unlike in the continuous-time case, there exist discrete-time systems, described
either in terms of shift or difference operator, which cannot be decomposed into observable and unobservable
subsystems due to the fact that the observable space, which is used to check observability instead of the well-
known observability rank condition [98,99], is not necessarily integrable [70]. However, it has been proven
that if the polynomial or analytic system is generically reversible, the observability decomposition can always
be achieved (see [64] and [65], respectively). Another important difference is related to realization theory. If
the i/o difference equation is not realizable in the state-space form, the compensated system can always be
made realizable using a post-compensator [81], whereas this is impossible in the continuous-time case [96].
A third important difference is that continuous-time systems can be linearized by a dynamic feedback if and
only if they can be linearized by the so-called dynamic endogenous feedback. In simple words, an endogenous
feedback means that the variables of the compensator/feedback are functions of the given system variables and
their derivatives/shifts. However, discrete-time systems may be linearizable by exogenous feedback even when
they are not linearizable by endogenous feedback [5].

10. CONCLUSION

The approach has proven to be very useful for studying standard discrete- and continuous-time nonlinear control
systems. The future studies are targeted to expand the classes of systems, for which the approach can be
generalized. For example, we look to study non-uniformly sampled systems [65] and time-delay systems, for
which some work has already been done. Also, a possible way to expand the number of control problems
solvable by the method is to study the flatness-based nonlinear model predictive control [36,88].

In trying to apply nonlinear techniques, symbolic computation quickly becomes a dominant concern.
Therefore, in Tallinn University a software package is created in the Mathematica environment for symbolic
computations. The package contains functions, which help to make the necessary computations in the 1-forms
approach, but also many of the control problems are implemented and added to the software package (see more
in [49]).
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2. Aranda-Bricaire, E. and Kotta, Ü. Generalized controlled invariance for discrete-time nonlinear systems with an application to the

dynamic disturbance decoupling problem. IEEE Trans. Autom. Control, 2001, 46(1), 165–171.
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86. Kotta, Ü., Zinober, A. S. I., and Liu, P. Transfer equivalence and realization of nonlinear higher order input-output difference
equations. Automatica, 2001, 37(11), 1771–1778.

87. Kucera, V. Discrete Linear Control: The Polynomial Equation Approach. John Wiley & Sons Ltd, New York, USA, 1979.
88. Mahadevan, R. and Doyle, F. J. III. Efficient optimization approaches to nonlinear model predictive control. Int. J. Robust Nonlin.

Contr., 2003, 13, 309–329.
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96. Mullari, T., Kotta, Ü., Nõmm, S., and Tõnso, M. Realization of nonlinear composite systems. Control Cybern., 2006, 35(4), 905–

921.
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Mittelineaarsete juhtimissüsteemide globaalsel lineariseerimisel põhinev lähenemine:
lühiülevaade

Juri Belikov, Arvo Kaldmäe ja Ülle Kotta

On antud ülevaade diferentsiaalvormidel põhinevast algebralisest meetodist, mida kasutatakse mittelineaarsete
juhtimissüsteemide uurimisel. Artikli eesmärk on kirjeldada antud meetodit, põhjendada vajalikke eeldusi ja
näidata meetodi efektiivsust ning mõningaid puudusi. Meetodi kaks kõige tähtsamat iseloomulikku omadust on
järgmised. Esiteks, mittelineaarsete funktsioonide asemel töötatakse nende diferentsiaalidega, mis tähendab, et
arvutused on kuni integreerimiseni sarnased lineaarse juhuga. Teiseks, meetodit kasutatakse juhtimissüsteemide
niisuguste omaduste uurimiseks, mis kehtivad vastava piirkonna peaaegu igas punktis. Esimene omadus
tähendab, et lahendused leitakse 1-vormide kaudu, misjärel 1-vormide integreeruvus võimaldab lahendused
esitada funktsioonide kaudu. Teise iseloomuliku omaduse tähtsus seisneb selles, et see võimaldab esitada
lahendused kompaktsemalt ja selgemalt, sest ei teki vajadust täpsustada punkti, mille ümbruses töötatakse,
ega antud punkti ümbrust. Lisaks nende aspektide üksikasjalikule kirjeldamisele on artiklis esitatud põhjalik
ülevaade probleemidest, mida on antud meetodiga uuritud, ja meetodit on võrreldud mõningate teiste algebraliste
meetoditega.


