Let V ;W∞ and W be the operator ideals of completely continuous, weakly ∞-compact, and weakly compact operators, respectively. In a recent paper, William B. Johnson, Eve Oja, and the author proved that V = W∞ ◦W -1 (Johnson, W. B., Lillemets, R., and Oja, E. Representing completely continuous operators through weakly ∞-compact operators. Bull. London Math. Soc., 2016, 48, 452–456). We show that this equality also holds in the context of Banach operator ideals
1. Ain, K., Lillemets, R., and Oja, E. Compact operators which are defined by ℓp-spaces. Quaest. Math., 2012, 35, 145–159.
https://doi.org/10.2989/16073606.2012.696819
2. Ain, K. and Oja, E. On (p; r)-null sequences and their relatives. Math. Nachr., 2015, 288, 1569–1580.
https://doi.org/10.1002/mana.201400300
3. Grothendieck, A. Produits tensoriels topologiques et espaces nucl´eaires. Mem. Am. Math. Soc., 1955, 16.
4. Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces I. Ergebnisse der Mathematik und ihrer Grenzgebiete 92. Springer–Verlag, Berlin–Heidelberg–New York, 1977.
5. Johnson, W. B., Lillemets, R., and Oja, E. Representing completely continuous operators through weakly ∞-compact operators. Bull. London Math. Soc., 2016, 48, 452–456.
https://doi.org/10.1112/blms/bdw015
6. Pietsch, A. Operator Ideals. Deutsch. Verlag Wiss., Berlin, 1978; North-Holland Publishing Company, Amsterdam–New York–Oxford, 1980.
7. Sinha, D. P. and Karn, A. K. Compact operators whose adjoints factor through subspaces of ℓp. Studia Math., 2002, 150, 17–33.
https://doi.org/10.4064/sm150-1-3