In this paper the influence of the boundary conditions on the fibre orientation distribution in rheology simulations of the casting of steel fibre reinforced concrete is discussed. The slip-length of the boundary condition can have a significant influence on the orientation of the fibres. This means that the material and surface properties of the formwork need to be taken into account when designing the casting technology for elements made of steel fibre reinforced concrete. This also implies that there is a chance to influence the fibre orientations by choosing appropriate surface properties of the formwork.
1. Chung, S. T and Kwon, T. H. Numerical simulation of fiber orientation in injection molding of short-fiberreinforced thermoplastics. Polym. Eng. Sci., 1995, 35(7), 604–618.
https:/doi.org/10.1002/pen.760350707
2. McLeod, M. A. Injection Molding of Pregenerated Microcomposites. Virginia Polytechnic
Institute and State University, 1997. Available from http://scholar.lib.vt.edu/theses/available/etd-0898-145634/ (accessed 17 October 2015).
3. Nabialek, J. Modeling of fiber orientation during injection molding process of polymer composites. Kompozyzy, 2011, 11(4), 347–351.
4. Park, J. M. and Park, S. J. Modeling and simulation of fiber orientation in injection molding of polymer composites. Math. Probl. Eng., 2011, 2011, ID 105637.
5. Vélez-García, G. M. Experimental Evaluation and Simulations of Fiber Orientation in Injection Molding of Polymers Containing Short Glass Fibers. Virginia Polytechnic Institute and State University, 2012. Available from http://scholar.lib.vt.edu/theses/available/etd-04262012-100846/unrestricted/Velez Garcia GM 2012.pdf (accessed 17 October 2015).
6. VerWeyst, B. E., Tucker, III C. L., Foss, P. H., and O’Gara, J. F. Fiber orientation in 3-D injection molded features: prediction and experiment. Int. Polym. Proc., 1999, 14(4), 409–420.
https:/doi.org/10.3139/217.1568
7. Andrić, J., Lindström, S. B., Sasic, S., and Nilsson, H. Rheological properties of dilute suspensions of rigid and flexible fibers. J. Non-Newt. Fluid Mech., 2014, 212(0), 36–46.
https:/doi.org/10.1016/j.jnnfm.2014.08.002
8. Renner, B., Altenbach, H., and Naumenko, K. Rotation of an axisymmetric particle in a plane flow. PAMM, 2011, 11(1), 333–334.
https:/doi.org/10.1002/pamm.201110158
9. Altenbach, H., Naumenko, K., Pylypenko, S., and Renner, B. Influence of rotary inertia on the fiiber dynamics in homogeneous creeping flows. ZAMM – J. Appl. Math. Mech., 2007, 87(2), 81–93.
10. Bentur, A. and Mindess, S. Fibre Reinforced Cementitious Composites. Spon Press, 1990.
11. Bentur, A. and Mindess, S. Fibre Reinforced Cementitious Composites. Taylor & Francis, London and New York, 2007.
12. Tejchman, J. and Kozicki, J. Experimental and Theoretical Investigations of Steel-Fibrous Concrete. 1st ed., Springer, 2010.
https:/doi.org/10.1007/978-3-642-14603-9
13. Herrmann, H., Eik, M., Berg, V., and Puttonen, J. Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica, 2014, 49(8), 1985–2000.
https:/doi.org/10.1007/s11012-014-0001-3
14. Eik, M., Puttonen, J., and Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct., 2015, 121, 324–336.
https:/doi.org/10.1016/j.compstruct.2014.11.018
15. Schnell, J., Schladitz, K., and Schuler, F. Richtungsanalyse von Fasern in Betonen auf Basis der Computer-Tomographie. Beton- Stahlbetonbau, 2010, 105(2), 72–77.
https:/doi.org/10.1002/best.200900055
16. Ponikiewski, T., Katzer, J., Bugdol, M., and Rudzki, M. Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater. Struct., 2015, 48(12), 3863–3874.
https:/doi.org/10.1617/s11527-014-0444-y
17. Gödde, L., Strack, M., and Mark, P. Bauteile aus Stahlfaserbeton und stahlfaserverstärktem Stahlbeton. Beton- Stahlbetonbau, 2010, 105(2), 78–91.
https:/doi.org/10.1002/best.200900067
18. Michels, J., Maas, S., Zürbes, A., and Waldmann, D. Tragverhalten von Flachdecken aus Stahlfaserbeton im negativen Momentenbereich und Bemessungsmodell für das Gesamtsystem. Beton- Stahlbetonbau, 2010, 105(8), 496–508.
https:/doi.org/10.1002/best.201000022
19. Suuronen, J. P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., and Herrmann, H. Analysis of short fibres orientation in Steel Fibre Reinforced Concrete (SFRC) using X-ray tomography. J. Mater. Sci., 2013, 48(3), 1358–1367.
https:/doi.org/10.1007/s10853-012-6882-4
20. Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., and Herrmann, H. DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J. Mater. Sci., 2013, 48(10), 3745–3759.
https:/doi.org/10.1007/s10853-013-7174-3
21. Vicente, M. A., González, D. C., and Mínguez, J. Determination of dominant fibre orientations in fibrereinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval., 2014, 29(2), 164–182.
https:/doi.org/10.1080/10589759.2014.914204
22. Eik, M. and Herrmann, H. Raytraced images for testing the reconstruction of fibre orientation distributions. Proc. Estonian Acad. Sci., 2012, 61, 128–136.
https:/doi.org/10.3176/proc.2012.2.05
23. Chi, Y., Xu, L., and Sui, Yu. H. Constitutive modeling of steel-polypropylene hybrid fiber reinforced concrete using a non-associated plasticity and its numerical implementation. Compos. Struct., 2014, 111, 497–509.
https:/doi.org/10.1016/j.compstruct.2014.01.025
24. Won, J. P., Hong, B. T., Lee, S. J., and Choi, S. J. Bonding properties of amorphous micro-steel fibre-reinforced cementitious composites. Compos. Struct., 2013, 102, 101–109.
https:/doi.org/10.1016/j.compstruct.2013.02.015
25. Krasnikovs, A., Zaharevskis, V., Kononova, O., Lusis, V., Galushchak, A., and Zaleskis, E. Fiber concrete properties control by fibers motion investigation in fresh concrete during casting. In 8th International DAAAM Baltic Conference “INDUSTRIAL ENGINEERING” 19–21 April 2012, Tallinn, Estonia. 2012, 6 pages.
26. Macanovskis, A. Short Fiber Composite Internal Geometry Influence on the Material’s Load Bearing Capacity and Strength. PhD thesis, Institute of Mechanics, Faculty of Transport and Mechanical Engineering, Riga Technical University, 2014.
27. Van Zijl, G. P. A. G. and Zeranka, S. The impact of rheology on the mechanical performance of steel fiber-reinforced concrete. In HPFRCC 6 (Parra-Montesinos, G. J., Reinhardt, H. W., and Naaman, A. E., eds), RILEM, 2012, 59–66.
https:/doi.org/10.1007/978-94-007-2436-5_8
28. Øfsdahl, E. Fibre-Reinforced Self-Compacting Concrete: Prediction of Rheological Properties. MSc thesis in Civil and Environmental Engineering, Department of Structural Engineering, Norwegian University of Science and Technology, 2012.
29. Laskar, A. I. and Talukdar, S. Rheology of steel fiiber reinforced concrete. Asian J. Civil Engin. (Building Housing), 2008, 9(2), 167–177.
30. Martinie, L., Rossi, P., and Roussel, N. Rheology of fiiber reinforced cementitious materials: classification and prediction. Cement Concrete Res., 2010, 40(2), 226–234.
https:/doi.org/10.1016/j.cemconres.2009.08.032
31. Boulekbache, B., Hamrat, M., Chemrouk, M., and Amziane, S. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater., 2010, 24(9), 1664–1671.
https:/doi.org/10.1016/j.conbuildmat.2010.02.025
32. Švec, O., Skoček, J., Olesen, J. F., and Stang, H. Fibre reinforced self-compacting concrete flow simulations in comparison with L-box experiments using carbopol. In 8th RILEM International Symposium on Fiber Reinforced Concrete: Challenges and Opportunities (BEFIB 2012) (Barros, Y. A. O., ed.), RILEM Publications SARL, 2012, 897–905.
33. Švec, O. Flow Modelling of Steel Fibre Reinforced Self-Compacting Concrete – Simulating Fibre Orientation and Mechanical Properties. PhD thesis. Department of Civil Engineering, DTU, 2013. Available from http://www.byg.dtu.dk/ english/ _ /media/Institutter/Byg/publikationer/PhD/byg-r289.ashx (accessed 17 October 2015).
34. Hess, S. and Köhler, W. Formeln zur Tensor-Rechnung. Palm & Enke, Erlangen, 1980.
35. Advani, S. G. and Tucker, III C. L. The use of tensors to describe and predict fiber orientation in short fiiber composites. J. Rheol., 1987, 31(8), 751–784.
https:/doi.org/10.1122/1.549945
36. Ehrentraut, H. and Muschik, W. On symmetric irreducible tensors in d-dimensions. ARI – An Int. J. Phys. Eng. Sci., 1998, 51(2), 149–159.
37. Herrmann, H. and Eik, M. Some comments on the theory of short fibre reinforced materials. Proc. Estonian Acad. Sci., 2011, 60(3), 179–183.
https:/doi.org/10.3176/proc.2011.3.06
38. Heinen, K. Mikrostrukturelle Orientierungszustände strömender Polymerlösungen und Fasersuspensionen. PhD thesis. Universität Dortmund, 2007.
39. Folgar, F. and Tucker, C. L. Orientation behavior of fibers in concentrated suspensions. J. Reinf. Plast. Comp., 1984, 3(2), 98–119.
https:/doi.org/10.1177/073168448400300201
40. Chung, D. H. and Kwon, T. H. Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J. Rheol., 2002, 46(1), 169–194.
https:/doi.org/10.1122/1.1423312
41. Damián, S. M. An Extended Mixture Model for the Simultaneous Treatment of Short and Long Scale Interfaces. PhD thesis. Universidad Nacional del Litoral, Santa Fe, Argentina, 2013. Available from http://bibliotecavirtual.unl.edu.ar:8180/tesis/bitstream/1/489/3/Santiago Marquez Damian PhD.pdf (accessed 17 October 2015).
42. Švec, O. 4C-Flow. 2014; http://www.dti.dk/4c-flow/examples/33808,2?example=SquarePlateNoRein (accessed 17 October 2015).
43. Eik, M. Orientation of Short Steel Fibres in Concrete:Measuring and Modelling. PhD thesis. Faculty of Civil Engineering, Institute of Cybernetics at Tallinn University of Technology, and Aalto University School of Engineering, 2014. Available from http://digi.lib.ttu.ee/i/file.php?DLID=965 (accessed 17 October2015).