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Abstract. In this paper the influence of the boundary conditions on the fibre orientation distribution in rheology simulations of the
casting of steel fibre reinforced concrete is discussed. The slip-length of the boundary condition can have a significant influence
on the orientation of the fibres. This means that the material and surface properties of the formwork need to be taken into account
when designing the casting technology for elements made of steel fibre reinforced concrete. This also implies that there is a chance
to influence the fibre orientations by choosing appropriate surface properties of the formwork.
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1. INTRODUCTION

Composite materials are more and more replacing tradi-
tional materials in many application areas. Composites
include layered materials and fibrous and fibre reinforced
materials. Many of these composites have been re-
searched for many years, but also new materials are
constantly developed. Short fibre composites are mate-
rials in which fibres are mixed into the often brittle matrix
material during the production. This mixture is then
filled into moulds (e.g. injection moulding of short fibre
plastics) or sprayed onto surfaces to strengthen them.
Many short fibre composites have been researched for
a long time, including their rheological properties
[1–9] and are used in everyday products. Although steel
fibre reinforced concrete is not a new material at all, the
understanding of its properties is not too well developed.
For a long time it has mainly been used in industrial
floors to prevent cracking.

Composites in general and steel fibre reinforced
cementitious composites (SFRCC) are gaining rapidly
importance in building industry. Much research has
been done on the properties of these materials during

the past decades [10–24]. In short fibre composites, like
steel fibre reinforced concrete, the material properties
depend on the spatial and orientational distribution of
the short fibres. Especially they can become anisotropic
and position dependent [12,13,25,26]. The rheology
during the production process of the structural parts
has influence on the fibre distribution. This has been
studied experimentally [27–32] and to a smaller extent
also in simulations [25,32,33]. However, the experiments
are always based on a specific setup, which is not
altered during the experiments, and the simulations
seem to be made to reproduce a special experiment.
Specifically, this means that the boundary conditions are
not changed and different boundary conditions are not
compared. It seems to be assumed that the presence of
the boundaries alone, not their properties, influence the
fibre orientations.

In practice, however, different formwork materials
are used, including raw wood and plastic planes as covers
and metal plates, also the use of lubricants is possible.
As will be shown in the next section, these properties
can influence not only the speed with which the cement
mass spreads, but also the fibre orientation distribution.
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As a result, the surface properties of the formwork and
their interaction with the cement mass need to be
taken into account in developing casting technologies for
SFRCC.

2. RHEOLOGY SIMULATIONS

2.1. Fibre orientation description

The flow of the concrete was simulated as laminar
flow. The Herschel–Bulkley viscosity model was used
to model a near Bingham fluid-like behaviour for the
concrete phase.

The orientation state of fibres at a point in space
can be described by a probability distribution function.
This function can be expanded in a series of tensors of
increasing order [34–37]. To reduce the computational
cost, the series can be truncated and a finite set of
orientation tensors rather than the probability distribution
function can be used to describe the orientation state. In
this paper, the second- and fourth-order tensors, ai j and
ai jkl , are used to describe the orientation state.

The equation of change for the second-order
orientation tensor from [35,38] is used to calculate the
evolution of the orientation state:

Dai j

Dt
= −1

2
(ωikak j −aikωk j)

+
1
2

λ (γ̇ikak j +aik γ̇k j −2γ̇klai jkl)

+2Dr(δi j −3ai j) , (1)

where D
Dt is the material derivative (co-moving derivati-

ve), ωi j is the vorticity tensor, λ is a parameter related
to the shape of the particle and is given by λ = (r2 −
1)/(r2+1), and Dr =CI γ̇ as suggested in [39]. Here γ̇ is
the scalar magnitude of the rate of the strain tensor, given
by

γ̇ = |γ̇i j|=
√

1
2
(γ̇i j γ̇ ji) , (2)

where CI is the fibre–fibre interaction coefficient which
serves to randomize the orientation state. The correlation
used to calculate CI depends on the fibre volume fraction
Φ and aspect ratio r:

CI = CI(Φ,r), (3)

Φ = nL
πD2

4
, (4)

r =
L
D

, (5)

where L is the fibre length, D is the diameter, and n is the
fibre number density. According to [38], two cases were
distinguished:

CI =

{
0.03(1− e−0.224Φr) if Φr ≤ 1.3
0.0184e−0.7148Φr if Φr > 1.3

. (6)

Since the equation of change for the second-
order orientation tensor contains the fourth-order
orientation tensor, a closure approximation that allows
the calculation of ai jkl from ai j is required. The IBOF-
5 closure approximation suggested in [40] is used here.
The IBOF-5 approximation is given by

ai jkl = β1S(δi jδkl)+β2S(δi jakl)+β3S(ai jakl)

+β4S(δi jakmaml)+β5S(ai jakmaml)

+β6S(aimam jaknanl) , (7)

where S(Ti jkl) =
1
24 ∑perm(i jkl) Ti jkl is the symmetrization

operator, with the sum carried out over all permutations
of i jkl, and the coefficients β are functions of the second
and third invariants of ai j (see [40]).

2.2. Numerical solver implementation

For the simulation the interFoam solver from the
OpenFOAM 2.3.0 library was used. The solver uses the
so-called Weller volume of fluid method [41] to simulate
multiphase free-surface flow. The solver was extended
to include calculations of the equation of change for
the second-order fibre orientation tensor field in the
concrete phase. At every time-step, Eq. (1) was solved
to simulate the evolution of the fibre orientation tensors
in the concrete phase. The simulation is one-way coupled
– the flow-field affects the fibre orientation distribution,
whereas the fibre orientation has no effect on the flow
field.

Since the fibres are present only in the concrete
phase, a boundary condition for the orientation tensors is
required at the concrete–air interface. In the cells where
the phase fraction of the concrete phase dropped below
a certain value, the fibre orientation tensors were forced
to a value representing a completely isotropic orientation
state. This effectively imposed a fixed value boundary
condition on the fibre orientation at the concrete–air
interface.

2.3. Simulation and boundary conditions

The first case simulated was a rectangular concrete slab
being poured from a circular pipe at one corner of the
slab. The geometry of the slab is W ×L×H: 1.2 m ×
1.2 m × 0.15 m, the inlet has a diameter of �14 cm and is
located in one corner 25 cm from the side walls (Fig. 1).
This is the same geometry as presented at the 4C-Flow
homepage [42], which also shows some results that could
be used for an initial verification.

At the inlet, a velocity profile was imposed on
concrete entering the domain with fibres aligned with the
pipe axis and a zero gradient boundary condition for the
pressure.

To the atmosphere above the mould, fixed total
pressure and a zero gradient boundary condition for the
velocity were applied.
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Fig. 1. The geometry and mesh of the verification simulation. The mesh has 384 509 cells. (a) Geometry: W ×L×H: 1.2 m ×
1.2 m × 0.15 m, inlet �14 cm, located 25 cm from the side walls; (b) top view of the mesh; (c) bottom view of the mesh.

At the walls of the mould, a zero gradient condition
was applied to the pressure field, while a planar state of
orientation in the plane of the walls was assumed for the
fibres. The influence of slip at the walls on the final orien-
tation state was investigated using a Navier slip bounda-
ry condition with varying slip lengths similarly to the
studies conducted in [33]. The different slip lengths used
in the Navier slip boundary conditions were 0, 8 cm, and
infinite slip length.

An initial verification of the simulations was per-
formed by visual comparison of the result with the avail-
able simulation results of 4C-Flow [42], which are in
good agreement for the slip length of 8 cm. Also,
the simulation is in reasonable agreement with the fibre
orientations obtained from measurements of fibre orien-
tations in full-size floor slabs [19,20,43].

Further simulations were performed with long
single-span slabs, cast from different points. The geom-
etry in these cases was W ×L×H: 1 m × 5 m × 0.25 m.

3. RESULTS AND DISCUSSION

Figure 2 shows the local fibre orientation distributions
represented by orientation glyphs, in this case ellipsoids.
A sphere represents isotropic distribution, a very elon-
gated glyph represents an area where fibres are very well
aligned with each other, and a lens- or penny-shaped
glyph represents a distribution in which the fibres are
mostly oriented within a plane.

As can be seen in Fig. 2, different boundary con-
ditions produce different orientation distributions of the
fibres. In Fig. 2a,d, which were simulated with a no-slip
boundary, the fibres are well aligned in the flow direction
especially in the bottom layer, while in Fig. 2b,e, which
were calculated with a slip length of 0.08 m, the fibres

are relatively well aligned perpendicular to the flow di-
rection. This is even more apparent in Fig. 2f, which was
calculated with an infinite slip length. Figure 3 shows
a close-up of the bottom layer in the same orientation
as Fig. 2d–f; this figure also shows the flow vectors. The
difference can be explained by the fact that with a no-slip
boundary, new fibres are transported to the front with the
concrete mass in the top layer of the flow, while with a
slip or slip-length boundary condition, the same concrete
mass and fibres are at the front for a longer time and there
is a stretching of the mass perpendicular to the flow di-
rection for some time.

4. CONCLUSION

The simulations show that the influence of the boundary
properties on the fibre orientations can be strong. This
means that an unintentional change in the boundary, e.g.
a rough wooden plank in between smooth planks, could
cause an unintentional and unexpected change in the fibre
orientations compared to predictions. This change could
weaken the whole structural element. On the other hand,
intentional variations in the boundary properties could be
used to willingly influence the fibre orientations. This
means that the formwork properties should be taken into
account when designing casting technologies, not only in
terms of the speed of spreading but also with respect to
the fibre orientations, and it could mean that in certain
conditions a rough surface, which slows the spreading
down, is actually to be preferred over a slippery one, be-
cause of the fibre orientation distribution.

Thus, to summarize, the influence of the surface
properties of the formwork on the fibre orientation distri-
bution should be studied, as it presents both a danger and
a chance at the same time for developing casting tech-
nologies of SFRCC.
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Fig. 2. Results of the rheology simulation. The glyphs represent the alignment of the fibres with each other, where a sphere
represents isotropy and cigar-shaped fibres that are well aligned with each other. (a) No slip at t = 5 s, top view; (b) slip length
0.08 m at t = 5 s, top view; (c) slip at t = 5 s, top view; (d) no slip at t = 14 s, bottom view; (e) slip length 0.08 m at t = 14 s, bottom
view; (f) slip at t = 14 s, bottom view.

(a) (b)

Fig. 3. Close-up of the bottom layer with flow vectors. Inflow is from the lower right, outside the image. It is noteworthy that
with the slippery formwork the fibres align mostly perpendicular to the flow direction in the bottom layer. (a) No slip; (b) slip
length 0.08 m.
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7. Andrić, J., Lindström, S. B., Sasic, S., and Nilsson, H.
Rheological properties of dilute suspensions of rigid
and flexible fibers. J. Non-Newt. Fluid Mech., 2014,
212(0), 36–46.

8. Renner, B., Altenbach, H., and Naumenko, K. Rotation
of an axisymmetric particle in a plane flow. PAMM,
2011, 11(1), 333–334.

9. Altenbach, H., Naumenko, K., Pylypenko, S., and
Renner, B. Influence of rotary inertia on the fiber
dynamics in homogeneous creeping flows. ZAMM –
J. Appl. Math. Mech., 2007, 87(2), 81–93.

10. Bentur, A. and Mindess, S. Fibre Reinforced Cementitious
Composites. Spon Press, 1990.

11. Bentur, A. and Mindess, S. Fibre Reinforced Cementitious
Composites. Taylor & Francis, London and New
York, 2007.

12. Tejchman, J. and Kozicki, J. Experimental and Theoretical
Investigations of Steel-Fibrous Concrete. 1st ed.,
Springer, 2010.

13. Herrmann, H., Eik, M., Berg, V., and Puttonen, J.
Phenomenological and numerical modelling of short
fibre reinforced cementitious composites. Meccanica,
2014, 49(8), 1985–2000.

14. Eik, M., Puttonen, J., and Herrmann, H. An orthotropic
material model for steel fibre reinforced concrete
based on the orientation distribution of fibres.
Compos. Struct., 2015, 121, 324–336.

15. Schnell, J., Schladitz, K., and Schuler, F. Richtungsanalyse
von Fasern in Betonen auf Basis der Computer-
Tomographie. Beton- Stahlbetonbau, 2010, 105(2),
72–77.

16. Ponikiewski, T., Katzer, J., Bugdol, M., and Rudzki, M.
Steel fibre spacing in self-compacting concrete
precast walls by X-ray computed tomography. Mater.
Struct., 2015, 48(12), 3863–3874.

17. Gödde, L., Strack, M., and Mark, P. Bauteile aus
Stahlfaserbeton und stahlfaserverstärktem Stahlbeton.
Beton- Stahlbetonbau, 2010, 105(2), 78–91.

18. Michels, J., Maas, S., Zürbes, A., and Waldmann, D.
Tragverhalten von Flachdecken aus Stahlfaserbeton
im negativen Momentenbereich und Bemessungsmo-
dell für das Gesamtsystem. Beton- Stahlbetonbau,
2010, 105(8), 496–508.

19. Suuronen, J. P., Kallonen, A., Eik, M., Puttonen, J.,
Serimaa, R., and Herrmann, H. Analysis of short
fibres orientation in Steel Fibre Reinforced Concrete
(SFRC) using X-ray tomography. J. Mater. Sci., 2013,
48(3), 1358–1367.

20. Eik, M., Lõhmus, K., Tigasson, M., Listak, M.,
Puttonen, J., and Herrmann, H. DC-conductivity
testing combined with photometry for measuring fibre
orientations in SFRC. J. Mater. Sci., 2013, 48(10),
3745–3759.
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Reoloogilise ääretingimuse mõju terasfiibri orientatsioonile
kiudbetoonelementide tootmisprotsessil

Heiko Herrmann ja Aarne Lees

On käsitletud reoloogilisi simulatsioone ja ääretingimuse mõju terasfiibri suunajaotusele kiudbetooni valuprotsessil.
Pinna karedusastmel võib teraskiudude orientatsioonile olla oluline mõju. Seega tuleb kiudbetooni valuvormide puhul
arvesse võtta vormide materjali- ja pinnaomadusi. Samuti avaneb võimalus mõjutada teraskiudude orientatsiooni,
valides sobivate pinnaomadustega valuvorme.


