ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Nonlinear dispersive wave equations for microstructured solids; pp. 203–211
PDF | doi: 10.3176/proc.2015.3.01

Author
Arkadi Berezovski
Abstract

Dispersion is a characteristic feature for wave propagation in microstructured solids. In the case of linear elasticity, dispersion effects are modelled by higher-order derivatives included into the wave equation. Nonlinear effects are also well known in wave propagation in solids. In principle, such effects may appear at the macroscale as well as at the microscale. The microstructural influence is often taken into account by the introduction of internal variables. This suggests that internal variables may behave nonlinearly. It is shown that the nonlinear behaviour of internal variables may lead at the macroscale to the Benjamin–Bona–Mahoney equation or the Camassa–Holm equation.

References

  1. Graff, K. F. Wave Motion in Elastic Solids. Courier Dover Publications, New York, 1975.

  2. Achenbach, J. Wave Propagation in Elastic Solids. North-Holland/Elsevier, Amsterdam, 1984.

  3. Santosa, F. and Symes, W. W. A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math., 1991, 51(4), 984–1005.
http://dx.doi.org/10.1137/0151049

  4. Maugin, G. A. On some generalizations of Boussinesq and KdV systems. Proc. Estonian Acad. Sci. Phys. Math., 1995, 44(1), 40–55.

  5. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, UK, 1999.

  6. Wang, Z.-P. and Sun, C. T. Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion, 2002, 36(4), 473–485.
http://dx.doi.org/10.1016/S0165-2125(02)00037-9

  7. Erofeyev, V. I. Wave Processes in Solids with Microstructure, Vol. 8. World Scientific, Singapore, 2003.
http://dx.doi.org/10.1142/5157

  8. Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. Waves in microstructured materials and dispersion. Philos. Mag., 2005, 85(33–35), 4127–4141.
http://dx.doi.org/10.1080/14786430500362769

  9. Metrikine, A. V. On causality of the gradient elasticity models. J. Sound Vib., 2006, 297(3), 727–742.
http://dx.doi.org/10.1016/j.jsv.2006.04.017

10. Berezovski, A., Engelbrecht, J., and Berezovski, M. Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech., 2011, 220(1–4), 349–363.
http://dx.doi.org/10.1007/s00707-011-0468-0

11. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., and Berezovski, M. Dispersive waves in microstructured solids. Int. J. Solids Struct., 2013, 50(11), 1981–1990.
http://dx.doi.org/10.1016/j.ijsolstr.2013.02.018

12. Samsonov, A. M. Strain Solitons in Solids and How to Construct Them. CRC Press, FL, 2001.
http://dx.doi.org/10.1201/9781420026139

13. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, NJ, 2003.
http://dx.doi.org/10.1142/5238

14. Pastrone, F., Cermelli, P., and Porubov, A. Nonlinear waves in 1-D solids with microstructure. Mater. Phys. Mech., 2004, 7, 9–16.

15. Pastrone, F. Nonlinearity and complexity in elastic wave motion. In Universality of Nonclassical Nonlinearity (Delsanto, P. P., ed.). Springer, New York, 2006, 15–27.
http://dx.doi.org/10.1007/978-0-387-35851-2_2

16. Christov, C. I., Maugin, G. A., and Porubov, A. V. On Boussinesq’s paradigm in nonlinear wave propagation. C.R. Mecanique, 2007, 335(9), 521–535.
http://dx.doi.org/10.1016/j.crme.2007.08.006

17. Engelbrecht, J., Berezovski, A., and Salupere, A. Nonlinear deformation waves in solids and dispersion. Wave Motion, 2007, 44(6), 493–500.
http://dx.doi.org/10.1016/j.wavemoti.2007.02.006

18. Engelbrecht, J., Salupere, A., and Tamm, K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion, 2011, 48(8), 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001

19. Andrianov, I. V., Danishevs’kyy, V. V., Ryzhkov, O. I., and Weichert, D. Dynamic homogenization and wave propagation in a nonlinear 1D composite material. Wave Motion, 2013, 50(2), 271–281.
http://dx.doi.org/10.1016/j.wavemoti.2012.08.013

20. Benjamin, T. B., Bona, J. L., and Mahony, J. J. Model equations for long waves in nonlinear dispersive systems. Philos. T. Roy. Soc. A, 1972, 272(1220), 47–78.
http://dx.doi.org/10.1098/rsta.1972.0032

21. Camassa, R., Holm, D. D., and Hyman, J. M. A new integrable shallow water equation. Adv. Appl. Mech., 1994, 31(31), 1–33.
http://dx.doi.org/10.1016/S0065-2156(08)70254-0

22. Johnson, R. S. Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech., 2002, 455, 63–82.
http://dx.doi.org/10.1017/S0022112001007224

23. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Generalized thermomechanics with dual internal variables. Arch. Appl. Mech., 2011, 81(2), 229–240.
http://dx.doi.org/10.1007/s00419-010-0412-0

24. Van, P., Berezovski, A., and Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equil. Thermody., 2008, 33(3), 235–254.

25. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman & Hall, London, 1993.
http://dx.doi.org/10.1007/978-1-4899-4481-8

26. Maugin, G. A. On the thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech., 2006, 75, 723–738.
http://dx.doi.org/10.1007/s00419-006-0062-4

27. Maugin, G. A. Infernal variables and dissipative structures. J. Non-Equil. Thermody., 1990, 15, 173–192.

28. Gurtin, M. E. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D, 1996, 92(3), 178–192.
http://dx.doi.org/10.1016/0167-2789(95)00173-5

Back to Issue