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Nonlinear dispersive wave equations for microstructured solids
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Abstract. Dispersion is a characteristic feature for wave propagation in microstructured solids. In the case of linear elasticity,
dispersion effects are modelled by higher-order derivatives included into the wave equation. Nonlinear effects are also well
known in wave propagation in solids. In principle, such effects may appear at the macroscale as well as at the microscale. The
microstructural influence is often taken into account by the introduction of internal variables. This suggests that internal variables
may behave nonlinearly. It is shown that the nonlinear behaviour of internal variables may lead at the macroscale to the Benjamin–
Bona–Mahoney equation or the Camassa–Holm equation.
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1. INTRODUCTION

Wave propagation in a homogeneous medium is a well described phenomenon if the linear elasticity theory
is applicable [1,2]. The situation becomes more complicated if the medium is inhomogeneous. Modern
advanced materials (composites, functionally graded materials, shape memory alloys, etc.), nowadays
widely used in engineering, are inhomogeneous by definition. Properties of such materials might not
be primarily controlled by their chemical composition but rather by their microstructure. Microstructure
is usually characterized by a length scale, which is much smaller than the length scale of the element.
Nevertheless, the influence of the microstructure may not be necessarily small, especially in dynamics. The
effect of inhomogeneity manifests itself in slowing down of the propagation and in the dispersion of the
wave.

In the linear case, classical theory is still sufficient for the description of wave propagation if we know all
the details of a given microstructure, namely, size, shape, composition, location, and properties of inclusions
as well as properties of the carrier medium. Typically, however, our knowledge about the microstructure
is limited: we know usually only the characteristic scale of the microstructure and, possibly, physical
properties of inclusions. That is why several modifications of the linear wave equation have been proposed
to describe microstructural influence on wave propagation in heterogeneous materials [3–9]. The review
and generalization of such linear models has been presented recently [10,11].

Even more complicated behaviour of waves in solids is observed if nonlinear effects enter into the
play [5,12]. The main attention is paid usually for travelling solitary wave solution of the corresponding
nonlinear dispersive-dissipative Korteveg–de Vries-type equation [5,12–19]. It should be noted that similar
solution possesses the so-called Benjamin–Bona–Mahoney equation and the Camassa–Holm equation
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derived for water waves [20–22]. A natural question is the following: could similar equations apply for
wave propagation in solids?

The answer is ”yes”, at least if we invoke the extended internal variable approach [23] for the description
of microstructural effects. In the framework of the dual internal variable theory [24], a fully coupled system
of equations for macro-motion and microstructure evolution is represented in the form of conservation laws.
Nonlinearities may be presented at both macro- and micro-scales. In the latter case, the modelling of
the nonlinear behaviour of internal variables may lead to the Benjamin–Bona–Mahoney equation or the
Camassa–Holm equation at the macroscale.

2. BALANCE LAWS IN THE MATERIAL FORMULATION

The existence of the microstructure generally means that the medium is inhomogeneous. Therefore, we
apply the canonical form of balance equations [25], where the inhomogeneities are treated in the most
consistent way.

In the case of the thermoelastic conductors of heat, one-dimensional motion is governed by local balance
laws for linear momentum and energy (no body forces)

(ρ0v)t −σx = 0, (1)(
ρ0v2/2+E

)
t − (σv−Q)x = 0, (2)

and by the second law of thermodynamics

St +(Q/θ +K)x ≥ 0. (3)

Here t is time, ρ0 is the matter density, v = ut is the physical velocity, σ is the Cauchy stress, E is the
internal energy per unit volume, S is the entropy per unit volume, θ is temperature, Q is the material heat
flux, and subscript denotes derivatives. The “extra entropy flux” K vanishes in most cases, but this is not a
basic requirement.

2.1. Material form of the energy conservation

The canonical energy equation is obtained by introducing the free energy per unit volume W := E −Sθ and
taking into account the balance of linear momentum (1)

(Sθ)t +Qx = hint , hint := σεt −Wt , (4)

where the right-hand side is formally an internal heat source [26].
In the case of non-zero extra entropy flux, the second law of thermodynamics gives

−(Wt +Sθt)+σεt +(θK)x − (Q/θ +K)θx ≥ 0, (5)

where ε = ux is the one-dimensional strain measure.

2.2. Material momentum conservation

Multiplying Eq. (1) by ux, Eq. (1) yields the following material balance of momentum (cf. [25])

Pt −bx = f int + f inh, (6)
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where the material momentum P, the material Eshelby stress b, the material inhomogeneity force f inh, and
the material internal force f int are defined by [25]

P :=−ρ0utux, b :=−
(
ρ0v2/2−W +σε

)
, (7)

f inh := (ρ0)xv2/2− Wx|expl , f int := σuxx − Wx|impl . (8)

Here the subscript notations expl and impl mean the derivative keeping the fields fixed (and thus extracting
the explicit dependence on x), and taking the derivative only through the fields present in the function,
respectively. The canonical equations for energy and momentum (4) and (6) are the most general expressions
we can write down without a postulate of the full dependence of the free energy W [26].

3. INTERNAL VARIABLES

In the framework of the phenomenological continuum theory it is assumed that the influence of the
microstructure on the overall macroscopic behaviour can be taken into account by the introduction of
an internal variable φ , which we associate with the integral distributed effect of the microstructure [23].
Following the concept of dual internal variables [24], we introduce an additional auxiliary internal variable
ψ . Then the free energy W is specified as the general sufficiently regular function of the strain, temperature,
internal variables φ ,ψ and their space derivatives

W =W (ux,θ ,φ,φx,ψ,ψx). (9)

The corresponding equations of state are given by

σ :=
∂W
∂ux

, S :=−∂W
∂θ

, τ :=−∂W
∂φ

, η :=−∂W
∂φx

, ξ :=−∂W
∂ψ

, ζ :=− ∂W
∂ψx

. (10)

The accepted functional dependence (9) and the equations of state (10) lead to the representation of the
internal force (8) in the form

f int := σuxx − Wx|impl =−∂W
∂θ

∂θ
∂x

− ∂W
∂φ

∂φ
∂x

− ∂W
∂φx

∂φx

∂x
− ∂W

∂ψ
∂ψ
∂x

− ∂W
∂ψx

∂ψx

∂x

= Sθx + τφx +ηφxx +ξ ψx +ζψxx = f th + f intr. (11)

Accordingly, the internal heat source hint is calculated as follows:

hint := σε̇ − ∂W
∂ t

=−∂W
∂θ

∂θ
∂ t

− ∂W
∂φ

∂φ
∂ t

− ∂W
∂φx

∂φx

∂ t
− ∂W

∂ψ
∂ψ
∂ t

− ∂W
∂ψx

∂ψx

∂ t

= Sθt + τφt +ηφxt +ξ ψt +ζψxt = hth +hintr. (12)

Here the introduced thermal source terms are defined in terms of space and time derivatives of temperature

f th := Sθx, hth := Sθt , (13)

whereas “intrinsic” source terms are determined by the internal variables

f intr := τφx +ηφxx +ξ ψx +ζ ψxx, hintr := τφt +ηφxt +ξ ψt +ζψxt . (14)
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Accounting for the expression of the internal heat source (12), the dissipation inequality (5) can be rewritten
as

Φ = τφt +ηφxt +ξ ψt +ζψxt − (Q/θ +K)θx +(θK)x ≥ 0. (15)

We rearrange the dissipation inequality by adding and subtracting the same terms

Φ = τφt −ηxφt +ηxφt +ηφxt +ξ ψt −ζxψt +ζxψt +ζψxt − (Q/θ +K)θx +(θK)x ≥ 0, (16)

and then arrive at

Φ = (τ −ηx)φt +(ξ −ζx)ψt − (Q/θ +K)θx +(ηφt +ζψt +θK)x ≥ 0. (17)

Following the scheme, originally developed in [27] for materials with diffusive dissipative processes,
described by means of internal variables of state, we choose the non-zero extra entropy flux K in the form

K =−θ−1ηφ t −θ−1ζψ t . (18)

Such a choice allows us to reduce the dissipation inequality to

Φ = (τ −ηx)φt +(ξ −ζx)ψt −
(

Q−ηφt −ζψt

θ

)
θx ≥ 0. (19)

In this case, the dissipation is clearly decomposed into intrinsic and thermal parts. The latter means that the
dissipation inequality in the isothermal case reduces to

Φ = (τ −ηx)φt +(ξ −ζx)ψt ≥ 0. (20)

Evolution equations for internal variables follow from the general solution of the dissipation inequality (20),
which has the form [28] (

φ t
ψt

)
=

(
L11 L12
L21 L22

)(
τ −ηx
ξ −ζx

)
, (21)

where coefficients of matrix L are dependent on state variables.
However, in the case of zero dissipation, Eq. (20) yields that the evolution equations for internal variables

can be represented in the form

φ t = R(ξ −ζx), ψt =−R(τ −ηx), (22)

where R is an arbitrary coefficient.

4. CONSTITUTIVE MODEL

Having the evolution equations for internal variables in the non-dissipative case, we can construct a
microstructure model. We begin with the free energy dependence in the form

W =
ρ0c2

2
u2

x +Auxφ + Ãuxφx +aux

(
dF(u)

du

)
x
+

1
2

Bφ2 +
1
2

Cφ2
x +

1
2

Dψ2 +bG(φx), (23)

where c is the elastic wave speed, A, Ã,B,C, and D are material parameters, F(u) and G(φx) are nonlinear
contributions at macro- and microscale, respectively, a and b are scaling coefficients. For simplicity, we
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include only the contribution of the second internal variable itself. In this case, stresses are calculated as
follows:

σ =
∂W
∂ux

= ρ0c2ux +Aφ + Ãφx +a
(

dF(u)
du

)
x
,

η =− ∂W
∂φx

=−Ãux −Cφx −bG′, ζ =− ∂W
∂ψx

= 0.
(24)

The interactive internal forces τ and ξ are, respectively,

τ =−∂W
∂φ

=−Aux −Bφ, ξ =−∂W
∂ψ

=−Dψ. (25)

The evolution equations (22) in the case of zero dissipation take the form

φ t = R(ξ −ζx) =−RDψ, (26)

ψt =−R(τ −ηx) = R(Aux +Bφ − Ãuxx −Cφxx −bG′
x). (27)

It follows immediately from Eqs (26) and (27) that the evolution equation for the primary internal
variable (26) can be rewritten as the hyperbolic equation

φ tt = R2D(τ −ηx). (28)

Accordingly, the balance of linear momentum results in

ρ0utt = ρ0c2uxx +Aφx + Ãφxx +a[F ′(u)]xx, (29)

and the evolution equation for the primary internal variable gives

Iφtt =Cφxx + Ãuxx +bG′
x −Aux −Bφ, (30)

where I = 1/(R2D) is an internal inertia measure.

4.1. Single dispersive wave equation

To derive the single equation we make following steps. We determine the first derivative of the internal
variable from Eq. (30)

Bφx =−Iφttx +Cφxxx + Ãuxxx +bG′
xx −Auxx. (31)

The third mixed derivative φttx follows from Eq. (29)

Aφttx =
(
ρ0utt −ρ0c2uxx −a[F ′(u)]xx

)
tt − Ãφttxx. (32)

The appeared fourth-order mixed derivative of the internal variable is calculated by means Eq. (30)

Iφttxx =Cφxxxx + Ãuxxxx +bG′
xxx −Auxxx −Bφxx, (33)

and, in its turn, the fourth-order space derivative is determined again from Eq. (29)

Ãφxxxx =
(
ρ0utt −ρ0c2uxx −a[F ′(u)]xx

)
xx −Aφxxx. (34)

Collecting all the results, Eqs (31)–(34), and substituting them into the balance of linear momentum (29),
we arrive at the dispersive wave equation in the form

ρ0utt −ρ0c2uxx −a[F ′(u)]xx =
C
B

(
ρ0utt −ρ0c2uxx −a[F ′(u)]xx

)
xx

− I
B

(
ρ0utt −ρ0c2uxx −a[F ′(u)]xx

)
tt +

Ã2

B
uxxxx +

Ãb
B

G′
xxx −

A2

B
uxx +

Ab
B

G′
xx.

(35)
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5. EXAMPLES OF NONLINEAR DISPERSIVE WAVE EQUATIONS

5.1. The Boussinesq equation

The obtained dispersive wave equation can be reduced to the Boussinesq equation under following
assumptions:
(1) I = 0, which means zero microinertia;
(2) G = 0 that corresponds to the absence of nonlinearity in the microstructure;
(3) A = 0 (no coupling between strain and internal variable; only gradients are coupled).

As a result, Eq. (35) reduces to

ρ0utt −ρ0c2uxx −a[F ′(u)]xx =
C
B

(
ρ0utt −ρ0c2uxx −a[F ′(u)]xx

)
xx +

Ã2

B
uxxxx. (36)

This equation belongs to the so-called “Boussinesq paradigm” [16]. The original Boussinesq equation needs
further simplifications. In particular, it should be suggested that C = 0, which means that the internal variable
φ is equal to the strain gradient. The nonlinearity function should be chosen as F(u) = u3 [16], which yields

utt − c2uxx =

(
3au2

ρ0
+

Ã2

ρ0B
uxx

)
xx
. (37)

The original Boussinesq equation can be recovered by identification u with free surface elevation and
choosing coefficients as c2 = gh, a = g/2, Ã2/ρ0B = gh3/3 (g is the acceleration by gravity, h is the constant
mean depth)

utt −ghuxx =

(
3g
2

u2 +
gh3

3
uxx

)
xx
. (38)

It is well known that the Boussinesq equation (38) describes waves, which can propagate both to the right
and to the left (the two-way long-wave equation).

5.2. The Korteveg–de Vries equation

The Korteveg–de Vries equation describes the time evolution of the wave propagating in one direction.
To derive the Korteveg–de Vries equation from the Boussinesq equation, we represent the Boussinesq
equation (38) in the normalized form

utt −uxx = ε
(
u2 +uxx

)
xx . (39)

Introducing the new variable v by u = vx, after one integration we obtain

vtt − vxx = ε
(
v2

x + vxxx
)

x . (40)

Representing v in the form of an asymptotic multiple-scale expansion

v(x, t) = f (ξ ,T )+ εv1(x, t)+ . . . , (41)

where ξ = x− t,T = εt, we obtain

vt = fξ ξt + fT Tt + εv1
t + . . .=− fξ + ε fT + εv1

t + . . . . (42)

Accordingly,

vtt =− fξ ξ ξt − fξ T Tt + ε fξ T ξt+ε fT T Tt + εv1
tt + . . .= fξ ξ −2ε fξ T + ε2 fT T + εv1

tt + . . .

vxx = fξ ξ + εv1
xx + . . . .

(43)
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Inserting expressions (41)–(43) into Eq. (40), we arrive at

v1
tt − v1

xx = 2 fξ T +2 fξ fξ ξ + fξ ξ ξ ξ + . . . . (44)

The function v1 will grow linearly in x+ t, unless

2 fξ T +2 fξ fξ ξ + fξ ξ ξ ξ = 0. (45)

The last equation reduces to the canonical Korteveg–de Vries equation by setting q = fξ/3,τ = T/2

qτ +6qqξ +qξ ξ ξ = 0. (46)

We can apply a similar asymptotic procedure to some other particular cases of the dispersive wave
equation (35).

5.3. The Benjamin–Bona–Mahoney equation

As an example, we consider first the normalized reduction of Eq. (35)

utt −uxx − ε(u2)xx =
(
utt −uxx − ε(u2)xx

)
tt +2εuxx + εG̃′

xx, (47)

which corresponds to following assumptions:
(1) C = 0;
(2) Ã = 0 (no coupling between strain and gradients of internal variable);
(3) F(u) = εu3/3 (similar to that in the Boussinesq equation).

The nonlinearity term G̃ is chosen to compensate the macroscopic nonlinearity in the right hand side of
Eq. (47):

G̃′ = (u2)tt or G̃′ = (u2)xx.

Both choices are equivalent in the first-order approximation and suggest the assumption φx ∼ u. Then
Eq. (47) is simplified to

utt −uxx − ε(u2)xx = (utt −uxx)tt +2εuxx. (48)

Again, we introduce the variable v, which gives (after one integration)

vtt − vxx − ε(v2
x)x = (vtt − vxx)tt +2εvxx. (49)

Using Eqs (41)–(43), we obtain the following equation

2 fξ T +2 fξ fξ ξ −2 fξ ξ ξ T +2 fξ ξ = 0, (50)

which can be reduced to the Benjamin–Bona–Mahoney equation [20] by setting q = fξ

qT +qξ +qqξ −qξ ξ T = 0. (51)

This equation is sometimes called the regularized long-wave equation.
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5.4. The Camassa–Holm equation

The Camassa–Holm equation can be recovered by a generalization of the previous case. We start with

utt −uxx − ε(3u2)xx = (utt −uxx)tt +2kεuxx + ε(u2
x +2uuxx)xx, (52)

which means that nonlinearity term G̃′ takes the form

G̃′ = (u2
x +2uuxx − (u2)tt).

Again, it is possible if φx ∼ u. In terms of the variable v Eq. (52) is represented as

vtt − vxx − ε(3v2
x)x =−(vtt − vxx)tt +2kεvxx + ε(v2

xx +2vxvxxx)x. (53)

The equation for the leading term in the multiple-scale asymptotic expansion takes the form

2 fξ T +6 fξ fξ ξ −2 fξ ξ ξ T +4k fξ ξ = 4 fξ ξ fξ ξ ξ +2 fξ fξ ξ ξ ξ , (54)

and can be reduced to the Camassa–Holm equation [21] by setting q = fξ

qT +2kqξ +3qqξ −qξ ξ T = 2qξ qξ ξ +qqξ ξ ξ . (55)

This equation incorporates nonlinear dispersive terms in addition to those terms associated with the
Benjamin–Bona–Mahoney equation.
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Mittelineaarsed lainevõrrandid mikrostruktuursete tahkiste jaoks

Arkadi Berezovski

Dispersioon on üks lainelevi mõjutav tahkise iseloomulik omadus. Lineaarsel juhul modelleeritakse disper-
siivsete efektide mõju lainevõrrandis sisalduvate kõrgemat järku tuletiste abil. Teiseks tuntud lainelevi mõju-
tavaks efektiks on mittelineaarsus, mis võib ilmneda nii mikro- kui ka makroskaalas. Mikrostruktuuri mõju
kirjeldamiseks tuuakse tihti sisse sisemuutujad. Käesolevas artiklis on näidatud, et mittelineaarsel juhul
võib sisemuutujate kasutamine mikroskaalal anda makroskaalal tulemuseks Benjamini-Bona-Mahoney või
Camassa-Holmi võrrandi.


