ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2024): 0.7
Research article
Classical observer form for discrete-time nonlinear system: MIMO case; pp. 2–14
PDF | https://doi.org/10.3176/proc.2026.1.01

Authors
Arvo Kaldmäe ORCID Icon, Vadim Kaparin ORCID Icon, Ülle Kotta ORCID Icon, Tanel Mullari ORCID Icon, Maris Tõnso ORCID Icon
Abstract

The paper addresses the problem of transforming multi-input multi-output discrete-time nonlinear state equations into the classical observer form using state transformation. Necessary and sufficient geometric solvability conditions are given in terms of vector fields. The results obtained generalize the previous ones in several aspects. First, the results are also applicable to non-reversible systems. Second, they hold almost everywhere, not only around the equilibrium point of the system. The generalizations are possible due to the use of different mathematical tools. The proof of sufficiency also provides a method for finding the state transformation. The results are illustrated by two examples.

References

1. Aranda-Bricaire, E., Kotta, Ü. and Moog, C. H. Linearization of discrete-time systems. SIAM J. Control Optim., 1996, 34(6), 1999–2023. 
https://doi.org/10.1137/s0363012994267315

2. Califano, C., Monaco, S. and Normand-Cyrot, D. Canonical observer forms for multi-output systems up to coordinate and output transformations in discrete time. Automatica, 2009, 45(11), 2483–2490. 
https://doi.org/10.1016/j.automatica.2009.07.003

3. Califano, C., Monaco, S. and Normand-Cyrot, D. On the observer design in discrete-time. Syst. Control Lett., 2003, 49(4), 255–265. 
https://doi.org/10.1016/S0167-6911(02)00344-4

4. Califano, C., Monaco, S. and Normand-Cyrot, D. On the observer design of multi output systems in discrete time. IFAC Proc. Vol., 2005, 38(1), 7–12. 
https://doi.org/10.3182/20050703-6-cz-1902.00655

5. Chung, S.-T. and Grizzle, J. W. Observer error linearization for sampled-data systems. In Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, USA, 13‒15 December 1989. IEEE, 1989, 90–95. 
https://doi.org/10.1109/CDC.1989.70080

6. Huijberts, H. J. C. On existence of extended observers for nonlinear discrete-time systems. In New Directions in Nonlinear Observer Design. Lecture Notes in Control and Information Sciences (Nijmeijer, H. and Fossen, T. I., eds). Springer, London, 1999, 244, 73‒92. 
https://doi.org/10.1007/BFb0109922

7. Huijberts, H. J. C., Lilge, T. and Nijmeijer, H. Synchronization and observers for nonlinear discrete time systems. In European Control Conference, Karlsruhe, Germany, 31 August–3 September 1999. IEEE, 1999, 4643–4648. 
https://doi.org/10.23919/ECC.1999.7100068

8. Huijberts, H. J. C., Nijmeijer, H. and Pogromsky, A. Y. Discrete-time observers and synchronization. In Controlling Chaos and Bifurcations in Engineering Systems (Chen, G., ed.). CRC Press, Boca Raton, FL, 1999, 439–456.

9. Kaparin, V. and Kotta, Ü. Transformation of nonlinear discrete-time system into the extended observer form. Int. J. Control, 2018, 91(4), 848–858. 
https://doi.org/10.1080/00207179.2017.1294264

10. Kaparin, V. and Kotta, Ü. Transformation of nonlinear MIMO discrete-time systems into the extended observer form. Asian J. Control, 2019, 21(5), 2208–2217. 
https://doi.org/10.1002/asjc.1824

11. Kaparin, V., Kotta, Ü. and Mullari, T. Extended observer form: simple existence conditions. Int. J. Control, 2013, 86(5), 794–803. 
https://doi.org/10.1080/00207179.2012.760048

12. Lee, H.-G. and Hong, J.-M. Algebraic conditions for state equivalence to a discrete-time nonlinear observer canonical form. Syst. Control Lett., 2011, 60(9), 756–762. 
https://doi.org/10.1016/j.sysconle.2011.06.001

13. Lee, H.-G. and Hong, J.-M. Discrete-time observer error linearizability via restricted dynamic systems. IEEE Trans. Autom. Control, 2012, 57(6), 1543–1547. 
https://doi.org/10.1109/TAC.2011.2179874

14. Lee, W. and Nam, K. Observer design for autonomous discrete-time nonlinear systems. Syst. Control Lett., 1991, 17(1), 49–58. 
https://doi.org/10.1016/0167-6911(91)90098-Y

15. Mullari, T. and Kotta, Ü. Transformation of nonlinear discrete-time state equations into the observer form: extension to nonreversible case. Proc. Estonian Acad. Sci., 2021, 70(3), 235–247. 
https://doi.org/10.3176/proc.2021.3.03

16. Mullari, T. and Kotta, Ü. Transformation of nonlinear discrete-time state equations into the observer form: revision. Proc. Estonian Acad. Sci., 2023, 72(1), 1–5. 
https://doi.org/10.3176/proc.2023.1.01

17. Mullari, T., Kotta, Ü., Bartosiewicz, Z., Pawłuszewicz, E. and Moog, C. H. Forward and backward shifts of vector fields: towards the dual algebraic framework. IEEE Trans. Autom. Control, 2017, 62(6), 3029–3033. 
https://doi.org/10.1109/tac.2016.2608718

18. Mullari, T., Kotta, Ü., Kaldmäe, A., Kaparin, V. and Simha, A. Extended observer form with vector fields. Int. J. Control, 2024, 97(10), 2399–2412. 
https://doi.org/10.1080/00207179.2023.2274060

19. Mullari, T., Kotta, Ü., Kaldmäe, A., Kaparin, V., Tõnso, M. and Pawłuszewicz, E. Extended observer forms for discrete-time nonlinear systems. IEEE Trans. Autom. Control. Submitted for publication.

20. Simha, A., Kaparin, V., Mullari, T. and Kotta, Ü. Extended observer forms for submersive discrete-time systems. IEEE Trans. Autom. Control, 2024, 69(4), 2684–2688. 
https://doi.org/10.1109/tac.2023.3336253

21. Zhang, J., Feng, G. and Xu, H. Observer design for nonlinear discrete-time systems: immersion and dynamic observer error linearization techniques. Int. J. Robust Nonlinear Control, 2010, 20(5), 504–514. 
https://doi.org/10.1002/rnc.1443

Back to Issue