ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2024): 0.7
Research article
Odd and even derivations, transposed Poisson superalgebra and 3-Lie superalgebra; pp. 487–499
PDF | https://doi.org/10.3176/proc.2025.4.02

Authors
Viktor Abramov ORCID Icon, Nikolai Sovetnikov
Abstract

One important example of a transposed Poisson algebra can be constructed by means of a commutative algebra and its derivation. This approach can be extended to superalgebras; that is, one can construct a transposed Poisson superalgebra given a commutative superalgebra and its even derivation. In this paper, we show that including odd derivations in the framework of this approach requires introducing a new notion. It is a super vector space with two operations that satisfy the compatibility condition of a transposed Poisson superalgebra. The first operation is determined by a left supermodule over a commutative superalgebra and the second is a Jordan bracket. Then it is proved that the super vector space generated by an odd derivation of a commutative superalgebra satisfies all the requirements of the introduced notion. We also show how to construct a 3-Lie superalgebra if we are given a transposed Poisson superalgebra and its even derivation.

References

1. Abramov, V. Matrix 3-Lie superalgebras and BRST supersymmetry. Int. J. Geom. Methods Mod. Phys., 2017, 14(11), 1750160.  
https://doi.org/10.1142/S0219887817501602   

2. Abramov, V. Super 3-Lie algebras induced by super Lie algebras. Adv. Appl. Clifford Algebras, 2017, 27, 9–16.  
https://doi.org/10.1007/s00006-015-0604-3

3. Abramov, V. and Liivapuu, O. Transposed Poisson superalgebra. Proc. Estonian Acad. Sci., 2024, 73, 50–59.  
https://doi.org/10.3176/proc.2024.1.06

4. Arnold, V. I. Mathematical Methods of Classical Mechanics. 2nd ed. Springer, New York, 1989.  
https://doi.org/10.1007/978-1-4757-2063-1

5. Awata, H., Li, M., Minic, D. and Yoneya, T. On the quantization of Nambu brackets. J. High Energ. Phys., 2001, 02013.  
https://doi.org/10.1088/1126-6708/2001/02/013

6. Bai, C., Bai, R., Guo, L. and Wu, Y. Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra, 2023, 632, 535–566.  
https://doi.org/10.1016/j.jalgebra.2023.06.006

7. Bai, R.-P. and Wu, Y. Constructions of 3-Lie algebras. Linear Multilinear Algebra, 2015, 63(11), 2171–2186.  
https://doi.org/10.1080/03081087.2014.986121

8. Beites, P. D., Ferreira, B. L. M. and Kaygorodov, I. Transposed Poisson structures. Results Math., 2024, 79, 93.  
https://doi.org/10.1007/s00025-023-02107-x

9. Carotenuto, A., Dabrowski, L. and Dubois-Violette, M. Differential calculus on Jordan algebras and Jordan modules. Lett. Math. Phys., 2019, 109, 113–133.  
https://doi.org/10.1007/s11005-018-1102-z

10. Filippov, V. T. n-Lie algebras. Sib. Math. J., 1985, 26, 879–891.
https://doi.org/10.1007/BF00969110

11. Hall, B. C. Quantum Theory for Mathematicians. Springer, New York, 2013.
https://doi.org/10.1007/978-1-4614-7116-5

12. Lambert, N. and Papageorgakis, C. Nonabelian (2,0) tensor multiplets and 3-algebras. J. High Energ. Phys., 2010, 2010, 83.
https://doi.org/10.1007/JHEP08(2010)083

13. McCrimmon, K. A Taste of Jordan Algebras. Springer, New York, 2004.

14. Musson, I. M. Lie Superalgebras and Enveloping Algebras. American Mathematical Society, Providence, Rhode Island, 2012.
https://doi.org/10.1090/gsm/131

15. Nambu, Y. Generalized Hamiltonian mechanics. Phys. Rev. D, 1973, 7, 2405–2412.
https://doi.org/10.1103/PhysRevD.7.2405

16. Ouaridi, A. F. On the simple transposed Poisson algebras and Jordan superalgebras. J. Algebra, 2024, 641, 173–198.
https://doi.org/10.1016/j.jalgebra.2023.11.026

17. Palmer, S. and Sämann, C. M-brane models from non-abelian gerbes. J. High Energ. Phys., 2012, 2012, 10.
https://doi.org/10.1007/JHEP07(2012)010

18. Roger, C. Algebras generated by odd derivations. J. Geom. Symmetry Phys., 2015, 40, 53–59.
https://doi.org/10.7546/jgsp-40-2015-53-59

19. Rotkiewicz, M. On strong n-Lie-Poisson algebras. J. Pure Appl. Algebra, 2005, 200(1–2), 87–96.
https://doi.org/10.1016/j.jpaa.2004.12.036

20. Slavnov, A. A. and Faddeev, L. D. Gauge Fields: Introduction to Quantum Theory. The Benjamin/Cummings Publishing Company, 1980.

21. Sovetnikov, N. Transposed Poisson and 3-Lie superalgebras. Bachelor’s thesis. University of Tartu, Estonia, 2024.

Back to Issue