Given a finite group G , the order graph of G, denoted by S(G), is a graph whose vertex set is G, and two distinct vertices a and b are adjacent if o(a) | o(b) or o(b) | o(a), where o(a), and o(b), are the orders of a and b in G, respectively. In this paper, by the order of an element, we give a characterization of the finite groups whose order graph is C4-free. As applications, we classify a few families of finite groups whose order graph is C4-free, such as nilpotent groups, dihedral groups and symmetric groups.
1. Abawajy, J., Kelarev, A. and Chowdhury, M. Power graphs: a survey. Electron. J. Graph Theory Appl., 2013, 1(2), 125–147.
https://doi.org/10.5614/ejgta.2013.1.2.6
2. Asboei, A. K. and Salehi, S. S. Some results on the main supergraph of finite groups. Algebra Discrete Math., 2020, 30(2), 172–178.
https://doi.org/10.12958/adm584
3. Asboei, A. K. and Salehi, S. S. The main supergraph of finite groups. N. Y. J. Math., 2022, 28, 1057–1063.
4. Cameron, P. J. Graphs defined on groups. Int. J. Group Theory, 2022, 11(2), 53–107.
https://doi.org/10.22108/ijgt.2021.127679.1681
5. Chakrabarty, I., Ghosh, S. and Sen, M. K. Undirected power graphs of semigroups. Semigr. Forum, 2009, 78, 410–426.
https://doi.org/10.1007/s00233-008-9132-y
6. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
7. Hamzeh, A. and Ashrafi, A. R. Automorphism groups of supergraphs of the power graph of a finite group. Eur. J. Comb., 2017, 60, 82–88.
https://doi.org/10.1016/j.ejc.2016.09.005
8. Hamzeh, A. and Ashrafi, A. R. The order supergraph of the power graph of a finite group. Turk. J. Math., 2018, 42(4), 1978–1989.
https://doi.org/10.3906/mat-1711-78
9. Kelarev, A. V. Graph Algebras and Automata. Marcel Dekker, New York, 2003.
https://doi.org/10.1201/9781482276367
10. Kelarev, A. V. and Quinn, S. J. A combinatorial property and power graphs of groups. Contrib. General Algebra, 2000, 12, 229–235.
11. Kelarev, A. V., Ryan, J. and Yearwood, J. Cayley graphs as classifiers for data mining: the influence of asymmetries. Discrete Math., 2009, 309(17), 5360–5369.
https://doi.org/10.1016/j.disc.2008.11.030
12. Kumar, A., Selvaganesh, L., Cameron, P. J. and Chelvam, T. T. Recent developments on the power graph of finite groups – a survey. AKCE Int. J. Graphs Comb., 2021, 18, 65–94.
https://doi.org/10.1080/09728600.2021.1953359
13. Kuratowski, C. Sur le problème des courbes gauches en topologie (On the problem of skew curves in topology). Fund. Math., 1930, 15, 271–283.
https://doi.org/10.4064/fm-15-1-271-283
14. Ma, X. and Su, H. On the order supergraph of the power graph of a finite group. Ricerche Mat., 2022, 71, 381–390.
https://doi.org/10.1007/s11587-020-00520-w
15. Xu, X., Xu, X., Chen, J. and Lin, S. On forbidden subgraphs of main supergraphs of groups. Electron. Res. Arch., 2024, 32(8), 4845–4857.
https://doi.org/10.3934/era.2024222