ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Lightweight CNN-based microfluidic droplet classification for portable imaging flow cytometry; pp. 302–311
PDF | https://doi.org/10.3176/proc.2025.2S.05

Authors
Fariha Afrin, Yannick Le Moullec, Tamas Pardy, Toomas Rang
Abstract

Classifying microfluidic droplets is an essential step in imaging flow cytometry. While deep learning algorithms can detect and classify such droplets in benchtop laboratory settings, their deployment on portable devices remains challenging because the computational requirements often exceed the capabilities of compact, resource-limited devices. This hinders the transition from stationary lab setups to field-deployable instruments. To tackle this issue, we introduce a customized YoloV4-tiny model deployed on a Raspberry Pi-5 (RPi5) single-board computer. Our neural network is trained using 878 images from a custom dataset of 975 images, derived from two videos captured with real-life microfluidic experimental setup. We evaluate performance based on inference time and mean average precision. Our system successfully classifies three distinct droplet types (no cell, one cell, multiple cells) within 13 ms, achieving a 99.95% mean average precision at an intersection over union threshold of 0.5 (mAP@0.5). We also compare the classification performance metrics of our customized YoloV4-tiny model against seven other combinations of machine learning models and platforms, including a recent low-cost, highly compact edge device with tensor processing unit capabilities, specifically, the MaixCam board with LicheeRV Nano module (SOPHGO SG2002) running a YoloV5-s model. Compared to this proposed customized YoloV4-tiny on the RPi5, the YoloV5-s on MaixCam achieves a significantly shorter classification time (5.34 ms) owing to its onboard tensor processing unit but suffers from a lower mAP@0.5 of 55.09% due to quantization. Our work shows that carefully designed systems can achieve a balance between speed and accuracy, enabling robust performance even on resource-limited devices and paving the way for microfluidic droplet classification in portable imaging flow cytometry.

References

1. Trinh, T. N. D., Do, H. D. K., Nam, N. N., Dan, T. T., Trinh, K. T. L. and Lee, N. Y. Droplet-based microfluidics: applications in pharmaceuticals. Pharmaceuticals, 2023, 16(7), 937. 
https://doi.org/10.3390/ph16070937  

2. Chen, Z., Kheiri, S., Young, E. W. K. and Kumacheva, E. Trends in droplet microfluidics: from droplet generation to biomedical applications. Langmuir, 2022, 38(20), 6233–6248. 
https://doi.org/10.1021/acs.langmuir.2c00491  

3. Liu, Z., Jin, L., Chen, J., Fang, Q., Ablameyko, S., Yin, Z. et al. A survey on applications of deep learning in microscopy image analysis. Comput. Biol. Med., 2021, 134, 104523. 
https://doi.org/10.1016/j.compbiomed.2021.104523  

4. Rutkowski, G. P., Azizov, I., Unmann, E., Dudek, M. and Grimes, B. A. Microfluidic droplet detection via region-based and single-pass convolutional neural networks with comparison to conventional image analysis methodologies. Mach. Learn. Appl., 2022, 7, 100222. 
https://doi.org/10.1016/j.mlwa.2021.100222  

5. Afrin, F., Le Moullec, Y. and Pardy, T. Microfluidic droplet classification through tuned convolutional neural network on a resource constrained platform. In 2024 19th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 2–4 October 2024. IEEE, 2024, 1–4.
https://doi.org/10.1109/BEC61458.2024.10737958

6. Zhou, X., Mao, Y., Gu, M. and Cheng, Z. WSCNet: biomedical image recognition for cell encapsulated microfluidic droplets. Biosensors, 2023, 13(8), 821. 
https://doi.org/10.3390/bios13080821  

7. Soldati, G., Del Ben, F., Brisotto, G., Biscontin, E., Bulfoni, M., Piruska, A. et al. Microfluidic droplets content classification and analysis through convolutional neural networks in a liquid biopsy workflow. Am. J. Transl. Res., 2018, 10(12), 4004–4016.

8. Kensert, A., Harrison, P. J. and Spjuth, O. Transfer learning with deep convolutional neural networks for classifying cellular morphological changes. SLAS Discov., 2019, 24(4), 466–475. 
https://doi.org/10.1177/2472555218818756  

9. Lee, K., Kim, S.-E., Doh, J., Kim, K. and Chung, W. K. User-friendly image-activated microfluidic cell sorting technique using an optimized, fast deep learning algorithm. Lab Chip, 2021, 21(9), 1798–1810. 
https://doi.org/10.1039/D0LC00747A  

10. Xu, J., Fan, W., Madsen, J., Tanev, G. P. and Pezzarossa, L. AI-based detection of droplets and bubbles in digital microflui­dic biochips. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 17–19 April 2023. IEEE, 2023, 1–6. 
https://doi.org/10.23919/DATE56975.2023.10136887  

11. Ghafari, M., Mailman, D., Hatami, P., Peyton, T., Yang, L. and Dang, W. A comparison of YOLO and Mask-RCNN for detecting cells from microfluidic images. In 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Korea, 21–24 February 2022. IEEE, 2022, 204–209.
https://doi.org/10.1109/ICAIIC54071.2022.9722616

12. Li, Y., Mahjoubfar, A., Chen, C. L., Niazi, K. R., Pei, L. and Jalali, B. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep., 2019, 9, 11088. 
https://doi.org/10.1038/s41598-019-47193-6  

13. Suzuki, Y., Kobayashi, K., Wakisaka, Y. and Ozeki, Y. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl. Acad. Sci. U.S.A., 2019, 116(32), 15842–15848. 
https://doi.org/10.1073/pnas.1902322116  

14. Meng, N., Lam, E. Y., Tsia, K. K. and So, H. K.-H. Large-scale multi-class image-based cell classification with deep learning. IEEE J. Biomed. Health Inform., 2019, 23(5), 2091–2098. 
https://doi.org/10.1109/jbhi.2018.2878878  

15. Riti, J., Sutra, G., Naas, T., Volland, H., Simon, S. and Perez-Toralla, K. Combining deep learning and droplet micro­fluidics for rapid and label-free antimicrobial susceptibility testing of colistin. Biosens. Bioelectron., 2024, 257, 116301. 
https://doi.org/10.1016/j.bios.2024.116301  

16. Ahmadpour, A., Shojaeian, M. and Tasoglu, S. Deep learning-augmented T-junction droplet generation. iScience, 2024, 27(4), 109326. https://doi.org/10.1016/j.isci.2024.109326

17. Asama, R., Liu, C. J. S., Tominaga, M., Cheng, Y.-R., Nakamura, Y., Kondo, A. et al. Droplet-based microfluidic platform for detecting agonistic peptides that are self-secreted by yeast expressing a G-protein-coupled receptor. Microb. Cell Factories, 2024, 23, 104. 
http://dx.doi.org/10.1186/s12934-024-02379-0   

18. Raspberry. Raspberry Pi Hardware
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html (accessed 2024-12-13).

19. Khan, S. Z., Le Moullec, Y. and Alam, M. M. An NB-IoT-based edge-of-things framework for energy-efficient image transfer. Sensors, 2021, 21(17), 5929. 
https://doi.org/10.3390/s21175929  

20. Sipeed. MaixCam – Fast Development for AI Vision and Audio Projects
https://wiki.sipeed.com/hardware/en/maixcam/index.html (accessed 2024-12-13).

21. De Jonghe, J., Kaminski, T. S., Morse, D. B., Tabaka, M., Ellermann, A. L., Kohler, T. N. et al. spinDrop: a droplet microfluidic platform to maximise single-cell sequencing information content. Nat. Commun., 2023, 14, 4788. 
http://dx.doi.org/10.1101/2023.01.12.523500  

22. Skalski, P. makesense.ai
https://github.com/SkalskiP/make-sense (accessed 2024-12-14).

23. Redmon, J. Darknet Open Source Neural Network Framework
https://github.com/pjreddie/darknet (accessed 2024-12-14).

24. Sipeed. LicheeRV Nano
https://wiki.sipeed.com/hardware/en/lichee/RV_Nano/1_intro.html (accessed 2024-12-13).

25. SOPHGO. SG200X Hardware
https://github.com/sophgo/sophgo-hardware/tree/master/SG200X (accessed 2024-12-13).

26. Sipeed. MaixHub
https://maixhub.com/ (accessed 2024-12-14).

27. Jõemaa, R., Gyimah, N., Ashraf, K., Pärnamets, K., Zaft, A. and Scheler, O. CogniFlow-Drop: integrated modular system for automated generation of droplets in microfluidic applications. IEEE Access, 2023, 11, 104905–104929.
https://doi.org/10.1109/ACCESS.2023.3316726

Back to Issue