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Microfluidic droplet classification offers remarkable potential for biomedical research 
and applications [1,2]. In parallel, recent progress in machine learning (ML) and deep 
learning has enabled (near) real­time, automated, reliable, and precise object 
classification. In particular, convolutional neural networks (CNNs), a subset of deep 
learning models, have led to advances in object detection and classification in various 
fields, including biomedical imaging [3,4]. Given their ability to extract complex 
features and patterns from image datasets, CNN models show promise in automating 
and enhancing the droplet classification phase in imaging flow cytometry (IFC). 

Nevertheless, current ML­based droplet classification methods are predominantly 
designed for benchtop (laboratory­grade) applications, typically relying on high­
performance graphics processing units (GPUs). Implementing ML­based droplet 
classification on embedded/edge devices remains challenging due to: (i) resource 
con straints (limited computational power, memory, and energy compared to labo ­
ratory­grade systems), (ii) the need to customize, adapt, and optimize large models 
and complex algorithms to run efficiently on resource­constrained devices, (iii) re ­
quirements for possible (near) real­time processing and speed vs accuracy trade­off 
on low­power devices; and (iv) the potential availability and exploitation of spe ­
cialized hardware, such as low­power tensor processing units (TPUs) and neural 
processing units (NPUs). This paper is an extended version of [5], providing ad ­
ditional references, more details about model customization and deployment, as well 
as additional deployment comparisons. 

In [6], researchers developed a CNN­based algorithm called the weakly 
supervised cell counting network (WSCNet) to classify cell­encapsulated droplets. 
The proposed method significantly improved the accuracy of traditional image 
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ABSTRACT  
Classifying microfluidic droplets is an essential step in imaging flow cytometry. While deep 
learning algorithms can detect and classify such droplets in benchtop laboratory settings, their 
deployment on portable devices remains challenging because the computational requirements 
often exceed the capabilities of compact, resource-limited devices. This hinders the transition 
from stationary lab setups to field-deployable instruments. To tackle this issue, we introduce 
a customized YoloV4-tiny model deployed on a Raspberry Pi-5 (RPi5) single-board computer. 
Our neural network is trained using 878 images from a custom dataset of 975 images, derived 
from two videos captured with real-life microfluidic experimental setup. We evaluate per -
formance based on inference time and mean average precision. Our system successfully 
classifies three distinct droplet types (no cell, one cell, multiple cells) within 13 ms, achieving 
a 99.95% mean average precision at an intersection over union threshold of 0.5 (mAP@0.5). 
We also compare the classification performance metrics of our customized YoloV4-tiny model 
against seven other combinations of machine learning models and platforms, including a recent 
low-cost, highly compact edge device with tensor processing unit capabilities, specifically, 
the MaixCam board with LicheeRV Nano module (SOPHGO SG2002) running a YoloV5-s model. 
Compared to this proposed customized YoloV4-tiny on the RPi5, the YoloV5-s on MaixCam 
achieves a significantly shorter classification time (5.34 ms) owing to its onboard tensor pro -
cessing unit but suffers from a lower mAP@0.5 of 55.09% due to quantization. Our work shows 
that carefully designed systems can achieve a balance between speed and accuracy, enabling 
robust performance even on resource-limited devices and paving the way for microfluidic 
droplet classification in portable imaging flow cytometry. 
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classification (approx. 89%) and exhibited robustness under 
different light ing conditions; however, WSCNet relied on a 
desktop com puter for operation. 

Another research effort aimed to improve the accuracy 
and efficiency of detecting microfluidic droplet contents in 
liquid biopsy workflows using CNN [7]. This CNN­based 
auto matic classification system achieved 96% precision in 
droplet classification but was not designed for resource­con ­
strained platforms. 

Transfer learning with deep CNNs has been used to clas ­
sify cellular morphological changes, achieving high accuracy 
between 95% and 97% [8]. Although this approach reduces 
the need for extensive dataset collection and labeling, which 
is a significant bottleneck in the development of deep learning 
models for specific microfluidic applications, it is not suitable 
for resource­constrained platforms. 

In [9], researchers developed an optimized image­ac ti ­
vated cell sorter based on a deep learning model specifically 
tailored to classify and sort polystyrene beads and cells in real 
time. However, it was deployed using the TensorRT29 frame ­
work on an NVIDIA GeForce GTX 1080 TI GPU. 

The authors of [10] developed a ML­based computer vi ­
sion solution for real­time detection of droplets and bubbles. 
Their approach used the Yolov5 framework with custom pre­ 
and post­processing techniques, trained on a dataset of 5115 
images. Their results demonstrated real­time speed and high 
accuracy in detecting and differentiating between droplets and 
unwanted bubbles, but the method required a relatively high­
end PC. 

In [11], researchers explored the application of computer 
vision and deep learning techniques to automate the analysis 
of yeast cell replicative lifespans. They compared Yolo and 
Mask R­CNN in terms of their efficacy in detecting and ana ­
lyzing yeast cells from microfluidic images. They found that 
Yolo demonstrated superior sensitivity in cell detection, while 
Mask R­CNN provided more detailed information on cell 
sizes. However, their work was implemented on a desktop 
GPU (RTX 2080 Ti). 

The authors of [12] developed a deep learning pipeline for 
high­throughput, label­free cell classification, using CNNs to 
process raw measurement signals and enabling low­latency 
inference suitable for real­time cell sorting applications. 
While their method demonstrated over 95% accuracy in label­
free classification of specific types of white blood cells and 
epithelial cancer cells, their system was deployed on a desk ­
top GPU (Tesla K80). 

In [13], researchers proposed a label­free chemical IFC 
that combines pulse pair­resolved wavelength­switchable 
Stokes laser, multicolor stimulated Raman scattering (SRS) 
microscopy, and a 3D acoustic focusing microfluidic chip, 
supported by deep learning algorithms. They achieved a 
throughput of approximately 140 cells/s; however, they did 
not indicate the platform used (we assume that it was a high­
end PC). 

The research presented in [14] applied CNNs for process ­
ing large­scale datasets of label­free cell images for high­
throughput cell classification. The authors compared CNN 
performance against k­nearest neighbors (kNN) and support 

vector machine (SVM) methods. Their CNN­based approach 
yielded over 99% accuracy in identifying multiple cell types 
based on label­free bright­field images. However, they used 
a desktop GPU (Tesla K40c). 

The work presented in [15] introduced a rapid and 
label­free antimicrobial susceptibility testing method for co ­
listin, combining deep learning with droplet microfluidics. 
The DropDeepL AST method used a deep learning­powered 
approach for sensitive detection of bacterial growth in drop ­
lets, achieving 100% categorical agreement with the ref erence 
broth microdilution method for colistin susceptibility profiles. 
However, the paper did not specify the type of platform on 
which the model was trained or deployed; we assume that it 
was not a resource­constrained platform. 

A deep learning­augmented T­junction droplet generation 
system was presented in [16]. The study used finite element 
analysis to simulate droplet production and its dynamics, 
followed by ML algorithms to estimate droplet characteristics 
based on input parameters. This approach enabled preselect ­
ing designs with comparable microfluidic configurations 
within the studied range. Nevertheless, the specific platform 
used for training and deploying the model was not disclosed; 
however, our assumption is that it was not a resource­con ­
strained platform. 

Finally, [17] developed a droplet­based microfluidic plat ­
form to detect peptides that are self­secreted by yeast. They 
used ML­based image processing techniques to analyze flu o ­
rescence emitted by single yeast cells in droplets, yielding 
high­throughput analysis and characterization of agonistic 
peptides. However, the paper did not specify the training or 
deployment platform; we also assume it was not a resource­
constrained platform. 

Despite the notable progress in microfluidic droplet object 
analysis, a research gap remains in the scientific literature re ­
lated to model optimization for portable IFC devices. Many re ­
search efforts have focused on maximizing classification ac ­
curacy, often at the cost of increased computational de mands, 
making them impractical for portable platforms. Our research 
contributes to bridging this gap by refining a deep learning­
based droplet classification system for use in port able de vices, 
demonstrating its viability even with resource limitations. 

To address this issue, we have built a portable droplet 
clas sification system that leverages the YoloV4­tiny model. 
This model was chosen for its balance between efficiency and 
accuracy; YoloV4 remains well suited for embedded systems 
due to its compact architecture, which allows for rapid in ­
ference without compromising detection capabilities. We spe ­
cifically selected YoloV4­tiny because it offers a signifi cant 
reduction in computational requirements compared to its full­
size counterpart, making it ideal for deployment on re source­
constrained devices such as the Raspberry Pi­5 (RPi5) [18]. 
Furthermore, we identified the need to customize this model 
for our specific use case. Customization is necessary to en ­
hance the model’s performance in classifying droplets within 
our unique microfluidic setup. By fine­tuning the model on 
our custom dataset of microfluidic droplets, we ensure that it 
can accurately distinguish between different droplet types 
(no cell, one cell, multiple cells). This customization process 
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allows us to optimize the model’s architecture and para ­
meters, resulting in improved accuracy and faster inference 
times specifically for our droplet classification task. This also 
aligns with prior work on optimizing ML models for energy­
efficient applications, where ML has been used in low­power 
applications [19]; in a similar vein, our approach explores the 
feasibility of deploying deep learning models on resource­
limited embedded systems by balancing accuracy, inference 
speed, and computational complexity. 

We evaluate performance in terms of inference time and 
mean average precision. On the RPi5, our system successfully 
classifies three distinct droplet types (no cell, one cell, mul ­
tiple cells) in 13 ms, while maintaining over 98% accuracy. 
We compare the classification performance metrics of our 
customized YoloV4­tiny model against seven other models/ 
platforms, including a recent, low­cost and highly compact 
edge device with TPU capabilities. The main steps and con ­
tributions of this research are as follows: 
● We generate a new custom dataset of 975 microfluidic 

droplets images. The dataset is created from two videos 
recorded in microfluidic experimental setup. 

● We introduce a droplet classification method (based on 
the YoloV4­tiny model) that offers high accuracy and in ­
ference speed, while remaining lightweight for resource­
constrained implementation. High accuracy is achieved 
through data augmentation, and high inference speed is 
achieved by reducing the number of filters in the con ­
volutional layers by 20% and applying batch processing 
(six images per batch). 

● Our neural network is trained using 878 images extracted 
from the custom dataset of 975 images. We first imple ­
ment and deploy our proposed approach on two resource­
constrained single­board computers (SBCs): initially on 
a Raspberry Pi­4B (RPi4) with a BCM2711 chip and 
8 GB RAM, and then on an RPi5 with a BCM2712 SoC 
and 8 GB RAM, achieving high accuracy (98%) and fast 
inference (13 ms). We then compare our results with those 
obtained on other platforms, including the compact and 

low­cost MaixCam board [20] with an SG2002 SoC 
featuring a TPU1 and 256 MB RAM. 
We describe our customized model, built on deep learning 

principles, and how it attains both high accuracy and rapid 
performance, allowing for effective analysis of microfluidic 
droplets containing cells. Furthermore, we evaluate our sys ­
tem using a new and previously unexamined test dataset, 
highlighting its robustness. By integrating deep learning 
methods into a resource­limited platform, our work supports 
the development of resource­efficient droplet classification, 
thereby advancing the field of portable microfluidic tech ­
nology. 

The remainder of this paper is organized as follows. 
Section 2 describes the materials and method used in this 
work, particularly focusing on model implementation for 
resource­constrained devices. Section 3 presents the results, 
including a comparative performance analysis. Section 4 con ­
cludes the paper and suggests potential future research. 

2. Materials and method 
2.1. Dataset 
The acquisition of training data is a major bottleneck in 
advancing microfluidic object detection and classification due 
to the scarcity of available datasets. In our work, a camera 
positioned directly above the microfluidic chip records the 
experimental video stream, capturing droplets formed at the 
T­junction of two channels. To extract images for model 
training, we used two distinct experimental videos [21] re ­
corded under varying conditions (illustrative still images 
extracted from these videos are presented in Fig. 1). The 
images were retrieved by capturing video frames at a rate of 
15 frames per second (fps), rather than the standard 1 fps, and 
were stored in JPG format. Each image contains either one 
or two microfluidic droplets, and each droplet may contain 
either no cell, a single cell, or multiple cells. 

Next, to detect and classify such droplets in images, we 
consider an ML­based approach based on CNNs. However, 

1  Similar to an NPU for low­precision operations (INT8) used in edge AI inference.

 
Fig. 1.  Images of droplets flowing inside the microfluidic channel. Original resolutions are 1024 × 416 pixels for (a) and 560 × 512 pixels 
for (b); both are resized to 416 × 416 pixels during the training phase of the proposed customized YoloV4-tiny model. 

An empty droplet (right) and a droplet containing multiple cells (left) A droplet containing two cells (right) 
and a droplet under formation (left) 

(a) (b)
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while CNNs are powerful tools for image classification, their 
performance can be negatively impacted by a lack of diversity 
in the training dataset. Without sufficient variety, the model 
may struggle to generalize well to new, unseen data. This may 
lead to overfitting, where the model performs well on training 
data but poorly on new examples. To address this issue, the 
two above­mentioned video recordings offer some diversity 
by capturing variations in illumination, contrast, motion blur, 
and object positioning, thereby helping to reduce overfitting. 

However, to further combat the risk of overfitting, we im ­
plemented a data augmentation strategy to synthetically ex ­
pand the size and diversity of the training dataset by creating 
modified versions of existing images. 

We applied the following augmentation techniques: 
● Contrast modification: the image contrast was adjusted 

within a range of 0.4 to 1.6, simulating variations in light ­
ing conditions and image quality that may occur in real­
world scenarios. 

● Gaussian blur: two ranges of Gaussian blur were applied: 
0.3 to 0.9 and 1.1 to 2.5. This technique mimics different 
levels of focus or image clarity, helping the model become 
more robust to variations in image sharpness. 

● Vertical and horizontal rotations: these transformations 
enable the model to recognize objects regardless of their 
orientation within the image. 
The augmentation process significantly expanded the da ­

taset to a total of 975 images. This expanded dataset was then 
split into two parts, i.e., training and validation set, and testing 
set, as follows: 
● Training and validation set: 878 images (approx. 90% of 

the total 975 images), with 791 images (approx. 90% of 
the 878 images) used for training and 87 images (approx. 
10% of the 878 images) for validation2. This validation set 
plays a vital role in assessing the model’s generalization 
capabilities and helps prevent overfitting during the train ­
ing process. 

● Testing set: 97 images (approx. 10% of the total 975 
images). 
This split ensures a substantial amount of diverse data for 

training and validation while reserving a separate set for final 
testing to evaluate the model’s performance on unseen data. 
 
2.2. Image annotation 
The process of image annotation is a crucial step in preparing 
datasets for object detection tasks, such as identifying drop ­
lets in IFC systems. This procedure requires recognizing and 
precisely marking the locations of all target objects within 
each image. 

To conduct the annotation, we leveraged the Make 
Sense AI tool [22], which provides an intuitive interface for 
manual labeling and allows for meticulous, high­precision 
annotation of each image. We opted for rectangular bounding 
boxes as our annotation method, because they effectively 
capture the spatial extent of droplets within the images. 
The annotation process consisted of the following steps: 
● Uploading images to the makesense.ai platform; 
● Carefully examining each image for droplets; 

● Drawing rectangular bounding boxes around each iden ti ­
fied droplet; 

● Verifying the accuracy of annotations through multiple 
reviews; 

● Exporting the annotation data in the required format (.txt 
files). 
The annotation format we adopted aligns with the YoloV4­

tiny architecture requirements, using the [x, y, w, h] con ven ­
tion. In this format, (x, y) represents the center point of the 
bounding box, providing the focal point of the detected ob ­
ject; w denotes the width of the bounding box, capturing the 
horizontal extent of the droplet; and h stands for the height 
of the bounding box, representing the vertical extent of the 
droplet. 
 
2.3. Proposed customized CNN model and 
        deployment 
In response to the requirements set forth by a bioanalytical 
specialist, we categorized the droplets into three groups: 
(i) empty droplets, (ii) droplets containing a single cell, and 
(iii) droplets containing multiple cells. Only droplets that are 
entirely visible in an image are factored into the classification 
process.  

Our approach leverages the YoloV4­tiny model as a foun ­
dation. We implemented a refinement process to optimize the 
model for our specific use case of microfluidic droplet detec ­
tion, with a focus on inference speed without significantly 
compromising accuracy, as outlined in what follows. 

The original YoloV4­tiny architecture consists of 21 con ­
volutional layers, organized into a series of cross­stage partial 
network (CSPSNet) blocks. A key modification in our cus ­
tomization process involved a careful reduction in the number 
of filters in these convolutional layers, as shown in Fig. 2. 
Through a series of ablation studies, we empirically deter ­
mined that a 20% reduction in filter count provides a suitable 
trade­off between model complexity and accuracy, as ex ­
plained below. Each cross­stage partial (CSP) module con ­
sists of a convolutional layer followed by batch normalization 
and the Leaky­RELU activation function, collectively re ­
ferred to as CL. The module also features skip connections, 
which help achieve an optimal balance between detection ef ­
ficiency and accuracy. Three CSP modules in the backbone 
progressively extract the image features. For the detection 
head, two heads are used for detecting larger and smaller 
objects. The detection section consists of one CL block and a 
convolutional layer, followed by the detection layer. The 
feature maps are upsampled and combined with residual 
connections from the same feature map resolution for the 
detection head at the second scale. The first scale, with a 
feature map size of 13 × 13, is used for larger objects, while 
the second scale, with a feature map size of 26 × 26, targets 
smaller objects. 

To ensure that the accuracy remained within acceptable 
bounds, we used an iterative process of filter reduction and 
performance evaluation. Through a series of ablation studies, 
we empirically tested different filter reduction levels (10%, 
20%, and 30%). We used a validation set to monitor the 

2 A 10% validation split is commonly used for microfluidic applications with relatively small datasets, such as in [4], which used 786 images. 
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model’s performance after each round of filter reduction, 
ensuring that any accuracy drop remained minimal. Based on 
previous studies and our experimental results, a 20% filter 
reduction typically results in a 1–5% decrease in mean aver ­
age precision (mAP), while batch processing may in troduce 
an additional 0.5–2% loss due to batch normalization effects. 
In our case, empirical evaluation showed that the accuracy 
drop remained within this expected range, making the trade­
off acceptable for our specific application. The 20% filter 
reduction resulted in a significant 36.16% decrease in the 
weight file size, from 22.4 MB to 14.3 MB. 

In practice, this filter reduction strategy serves four pur ­
poses, listed below. 

First, by reducing the number of filters, we significantly 
decrease the total number of parameters in the model. This 
compression result in a smaller model size, which is crucial 
for deployment on resource­constrained edge devices used in 
portable microfluidic systems. 

Second, fewer filters result in fewer computations during 
the forward pass of the network. This directly translates to 
faster inference times, which are critical for real­time droplet 
detection and classification in flow cytometry applications. 

Third, reducing the model’s complexity through filter 
reduction can help mitigate overfitting, especially when work   ­
ing with limited datasets, which are common in special ­
ized scientific applications, such as microfluidic droplet 
analysis. 

Fourth, the reduced model size requires less memory dur ­
ing both training and inference, making it more suitable for 
deployment on devices with limited RAM. 

Then, we fine­tuned the hyperparameters to optimize the 
performance of our customized YoloV4­tiny model. After 
extensive experimentation, we settled on a final learning rate 
of 0.00261, which was determined through a cyclical learning 
rate test to find an optimal balance between convergence 
speed and stability. This learning rate was coupled with a 

weight decay rate of 0.0005 to prevent overfitting and im ­
prove generalization. 

Finally, we set a momentum of 0.9 in the stochastic gra ­
dient descent optimizer, which helped accelerate convergence 
and mitigate oscillations during training. The size of the batch 
of images was set to 64 to balance memory constraints and 
the need for stable gradient estimates. This batch size was 
further divided into eight subdivisions and the training pro ­
cess was configured to run for a maximum of 6000 batches, 
following the default settings recommended for YoloV4­tiny. 

For training, we used the Darknet framework [23] on 
Google Colaboratory Pro, with a T4 GPU configured with a 
soft ware environment including Python 3.10.12, CUDA 12.2, 
cuDNN 8.9.6, and OpenCV 4.8.0. The trained model pro ­
cesses each input image to assign a confidence score to each 
detected droplet. We assessed performance by evaluating ac ­
curacy and mean average precision on the validation dataset. 
As depicted in Fig. 3, the model achieved optimal per form ­
ance at 6000 iterations, reaching a training loss value of 0.09. 

3. Deployment results 
This section first outlines the outcomes of our proposed 
system for classifying microfluidic droplets, designed par ­
ticularly for integration into portable devices. Our analysis 
em phasizes three primary aspects: classification accuracy, 
inference processing time, and resource consumption on a 
resource­constrained device. The section then presents a com ­
parison with similar studies. 
 
3.1. Droplet classification performance evaluation 
We evaluated the performance of droplet classification using 
an input size of 416 × 416 pixels and a non­maximum­
suppression threshold set to 0.7 for our test datasets. Figure 4 
illustrates examples of droplet detection outcomes on images 
from our test dataset. 

 
Fig. 2.  Proposed customized YoloV4-tiny architecture. The network accepts a three-channel input (ch = 3), and its backbone comprises a 
series of convolutional layers (CL) and cross-stage partial (CSP) blocks combined with MaxPooling. Skip connections and upsampling (Up) 
are used for multi-scale feature fusion via concatenation. The number of filters is indicated by f, and the final stage includes two 
detection heads. Abbreviations: Conv – convolutional, BN – batch normalization. 

f = 410 f = 205 f = 410

f = 205f = 102

f = 51f = 26416 × 416 
 Ch = 3

13 × 13 
 

26 × 26 
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3.2. Custom model performance 
Table 1 presents the performance metrics of our customized 
YoloV4­tiny model, which are derived using Eqs (1) and (2). 
In these equations, TP represents true positives, FP signifies 
false positives, and FN stands for false negatives: 
 

Precision = TP/(TP + FP), 

Recall = TP/(TP + FN). 
 
The model demonstrates substantial reliability and ef ­

fectiveness in accurately distinguishing various droplet types, 
as shown by its high precision of 0.95 and perfect recall of 1, 
resulting in minimal misclassification. The mAP at an intersec ­
tion over union (IoU) threshold of 0.5, denoted as mAP@0.5, 
is a reflection of the accuracy, where IoU measures the over ­

lap between predicted and actual bounding boxes. The ro ­
bustness of the model is significant, with a notable mAP of 
99.95%. 

Our implementation was evaluated on both RPi4 and 
RPi5 SBCs, each equipped with 8 GB of RAM and running 
on a 64­bit operating system. High­speed image processing 
is crucial for real­time applications. To assess processing ef ­
ficiency, we conducted tests with the model using the ap ­
propriate test dataset on the specified devices. The test results 
showed that the processing duration on the RPi5 was 20 times 
faster (13 ms) compared to RPi4 (265 ms).3 On the RPi5, the 
model achieved a classification inference time of 13 ms, 
equat ing to 76 fps; this speed, obtained with a six­image batch, 
suffices for practical applications. Given these superior results 
with the RPi5, the RPi4 was not considered for further analysis. 

As noted above, these results were obtained using batches 
of six images rather than a single image. We evaluated in ­
ference speed across batch sizes ranging from 1 to 16 images 
and observed that processing time improved up to a batch size 
of six, beyond which no further improvements were noted. 
Subsequently, all results were averaged, and inference time 
was calculated for a single input image. 

Beside inference processing time, resource utilization was 
an important part of our assessment due to the limitations of 
portable devices. We tracked CPU and memory consumption 
during classification tasks to guarantee the system’s perform ­
ance efficiency. As shown in Table 2, the mean CPU usage 

3 We also transformed our customized model into TensorFlow and then TensorFlow Lite (TFLite) to try to reduce the inference processing time. However, 
the inference processing time for a single image exceeded 1 s on RPi4.

 
Fig. 3.  Left: overview of the training loss function for YoloV4-tiny with compressed filters, trained for up to 6000 iterations, at which point 
the average loss reaches 0.09; right: zoomed-in view showing the convergence of the training loss function. 

 
 
 

Fig. 4.  Examples of microfluidic droplet classification results after 6000 training iterations, with prediction probability above 99%.  

Microfluidic droplet with a single cell, with 
prediction probability above 99%

Empty microfluidic droplet cell, with prediction 
probability above 99%

(a) (b)

    Metric      Performance value (%) 
   TP 112 
   FP     6 
   FN      0 
   Precision             0.95 
   Recall     1 
 mAP@0.5        99.95 

 
Table 1. Classification performance metrics of the proposed 
customized YoloV4-tiny model (test dataset = 97 images of 
droplets, each containing zero, one, or multiple cells) 
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and memory consumption on the RPi5 were 70% and 60%, 
respectively. These values suggest that the proposed approach 
is adequately lightweight, making it applicable for portable 
use, since CPU and memory consumption remain within 
practical limits. 
 
3.3. Comparison with similar studies 
In this section, we juxtapose the classification performance 
metrics of our optimized YoloV4­tiny model results against 
seven other models/platforms. It should be noted that direct 
one­to­one comparisons are not feasible because (i) previous 
works do not focus on the same applications as ours, and 
(ii) many of these studies were implemented on high­per ­
formance desktop PCs and/or GPUs. Nevertheless, such a 
comparison helps get a better understanding of the trade­offs 
between accuracy and inference processing time. 

To balance inference processing time and accuracy, we 
leveraged model optimizations, hardware­aware deployment 
strategies, and empirical comparisons. Notably, we deployed 
our customized YoloV4­tiny on an RPi5, and also retrained 
YoloV5­s using our dataset for deployment on the MaixCam 
board. This additional training and deployment were con ­
ducted as part of this work and are briefly described below, 
prior to presenting the overall comparison table. 
 
3.4. Training and deployment of the YoloV5-s model  
        onto the MaixCam board 
The MaixCam board [20] is a prime example of a recent (July 
2024), low­cost (approx. 34 EUR), and highly compact 
(22.86 × 35.56 mm; see Fig. 5) edge device with an em bed ­
ded neural processing unit. The MaixCam board is based on 
the LicheeRV Nano module [24], built around a SOPHGO 
SG2002 system on chip (Soc) [25]; it features a primary 
700 MHz RISC­V C906 core and a secondary (boot­selec t ­
able) 1 GHz RISC­V C906 core or 1 GHz ARM A53 core, 
along with 256 MB of on­chip RAM. Notably, the SG2002 
features a TPU capable of up to 1 tera operations per second 
(TOPS) @INT8, which should help reduce the inference 
processing time. 

We used the same dataset described earlier in the paper. 
We converted the labeled dataset from a Darknet­compatible 
format (.jpg and .txt files) to a VOC­compatible format (.jpg 
and .xml), and uploaded the data to the MaixHub environ ­
ment [26] for training the model and generating a format 
compatible with the SG2002 chip on the MaixHub board 
(.mud and .cvi files). 

We also experimented with several hyperparameters, such 
as batch size and learning rate. The best validation accuracy 
results that we obtained empirically were with a batch size of 
four and a learning rate of 0.0001, which yielded a validation 
accuracy of 0.966 at epoch #120. 

3.5. Contrasting combinations of ML models and their  
        deployments 
As mentioned earlier, a direct comparison of the different 
combinations of ML models and their deployments on var ­
ious hardware targets is not feasible; however, some insights 
can be derived from Table 3. 

Firstly, when compared to desktop deployments, it can be 
clearly seen that our customized YoloV4­tiny model deployed 
on the RPi5 delivers a smaller inference processing time of 
13 ms, compared to the 74.3 ms reported in [10] for single­class 
detection using YoloV5 on an Intel Core i7, along with com ­
parable mAP accuracy values (99.95%@0.5 vs 99.3%@0.5, 
respectively). It is also worth noting that studies using high­
end PCs or GPUs ([12–14]) achieved both high mAP and 
low processing times (where such metrics were reported); 
however, the GPUs used – such as the NVIDIA Tesla K80 in 
[12] and the Nvidia Tesla K40c in [14] – are dual­slot PCIe 
cards (267 mm × 111 mm), with a computational power of 
ap proximately 8.74 TFLOPS@FP32 / 2.91 TFLOPS@FP64 
and 4.29 TFLOPS@FP32 / 1.43 TFLOPS@FP64, respec tively. 
These boards have power requirements of up to 375 W and 
245 W, respectively. Such specifications clearly position these 
solutions for non­portable applications due to the physical 
size and power requirements of their processing units. 

 

 
Fig. 5. Boards used in this work. Clockwise from the top: RPi4 SBC 
(used only up to Section 3.2 in this paper), RPi5 SBC with 
heatsink/fan, and MaixCam edge devices (top side with SG2002 
SoC, bottom side with WiFi chip), along with a metric ruler. As can 
be seen, the MaixCam is a highly compact board owing to its 
minimal connectivity options (USB and WiFi), yet featuring a SoC 
with a 1 TOPS@INT8 TPU. 

  Resource Average usage 
CPU usage 70% 
Memory usage 60% 

 

Table 2. Resource utilization of the proposed customized YoloV4-
tiny model on RPi5 



In contrast, the RPi5 measures only 85.6 mm × 56.5 mm and 
has a power requirement of up to 25 W only, providing approx ­
imately up to 12 GFLOPS@FP32/CPU, 20 GFLOPS@FP32/ 
GPU, and 750 MFLOPS@FP64/CPU. (Note: The RPi4’s Cortex­
A72 CPU lacks efficient FP64 acceleration and native GPU 
ac celeration, so Yolo is executed as FP32/CPU.) The MaixCam 
features even more compact specifications: 22.86 × 35.56 mm 
in size, up to 2.5 W power consumption, approximately 2.8–4 
GFLOPS@FP32, 250 MFLOPS@FP64, and 1 TOPS@INT8/ 
TPU (Yolo is accelerated on this TPU). 

Secondly, when comparing the resource­constrained de ­
ployments, it can be seen that the MaixCam running the 
YoloV5­s model achieves a smaller inference processing 
time (5.34 ms) than the customized YoloV4­tiny on the RPi5 
(13 ms); however, this comes at the cost of a much lower 
mAP of 55.09%. This lower score stems from the more ag ­
gressive quantization required to map the model onto the 
INT8 TPU of the SG2002 SoC on the MaixCam board. 

We also trained and deployed the YoloV5­s model for the 
RPi5; while it achieved a mAP@0.5 of 92.10%, the clas ­
sification time was high at 208.5 ms, indicating that this 
combination is not favorable. 

Due to a yet unsolved issue with the toolchain, we were 
unable to convert our customized YoloV4­tiny model for 
the MaixCam. Instead, we provide estimated performance 
numbers, as explained below. Using the YoloV5­s results, we 
can derive an approximate performance scaling factor be ­
tween the MaixCam and RPi5 platforms: 
● Speedup factor (MaixCam vs RPi5 for YoloV5­s): 208.5 

ms (RPi5) / 5.34 ms (MaixCam) ≈ 39.1×. This reflects 
that the MaixCam’s TPU accelerates inference sig nifi ­
cantly compared to the RPi5’s CPU­based inference. 

● Accuracy drop (YoloV5­s on MaixCam vs. RPi5): from 
92.10@0.5 to 55.09@0.5 ≈ 40.2%. This reflects that the 
MaixCam’s TPU has precision limitations due to lower­
bit computation, i.e., only INT8 (MaixCam) instead of 
FP32 (RPi5). 

● Since YoloV4­tiny is structurally similar to YoloV5­s, we 
assume the same performance ratio applies. Using the 
39.1× speedup factor yields 13 ms / 39.1 ≈ 0.33 ms. This 
suggests that the MaixCam TPU could theoretically 
process our customized YoloV4­tiny model in under 1 ms; 
however, real­world constraints (e.g., memory access, 
TPU overhead) would likely increase inference time to 
around 1–2 ms. On the other hand, we expect the mAP as 

99.95 × (100 – 40.2) ≈ 59.8%; i.e., running our cus ­
tomized YoloV4­tiny model on the MaixCam TPU might 
reduce accuracy to around 60%, which is not favorable 
despite the small processing time. 
Besides the above accuracy and processing time per ­

formance results, it should also be noted that the RPi5 is an 
SBC with power requirements of up to 25 W (5 V, 5 A). This 
is not necessarily a major concern; for example, our portable 
setup [27] uses the RPi as a common platform, as this allows 
implementing additional functionalities on a single board. 
On the other hand, for applications where power and/or 
energy requirements are more stringent, a board such as 
the MaixCam – with an approximately 10× lower power 
requirement of 2.5 W (5 V, 500 mA) – would be more 
suitable, if the cost of lower accuracy is acceptable. 

To sum up, the above results illustrate that our customized 
YoloV4­tiny on the RPi5 offers a good trade­off among the 
different tested combinations, offering significant accuracy 
with competitive processing time on a resource­limited plat ­
form, which makes it suitable for portable IFC devices. 

4. Conclusion 
This work demonstrated the feasibility of effective droplet 
classification in IFC on a resource­constrained device using 
a customized YoloV4­tiny model. A new dataset of droplet 
images was created from videos recorded on our existing set ­
up, with improved accuracy and robustness achieved through 
data augmentation. The model’s inference processing time 
was reduced by cutting the convolutional layer filters by 20% 
and using batches of six images. Our proposed system can 
accurately classify droplets in 13 ms, achieving an accuracy 
surpassing 99% when running on an RPi5 SBC. Additional 
experiments with YoloV5­s on the compact MaixCam board, 
featuring an SG2002 SoC with a TPU, illustrated how a sig ­
nificantly smaller classification time (5.34 ms) must be traded 
off for accuracy (mAP@0.5) due to quantization. 

Future work could focus on decreasing inference pro ­
cessing time on resource­constrained platforms by applying 
more sophisticated pruning and quantization techniques, 
aiming for real­time or near­real­time classification while 
preserving accuracy. Moreover, we could explore other Yolo 
versions; while larger models (e.g., YoloV4, YoloV5­m/l/x) 
might offer higher accuracy, they would increase com puta ­
tional load, limiting real­time feasibility. Conversely, YoloV7­
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[12] CNN NVIDIA Tesla K80 GPU Cells 95.7 2.2 ms 
[13] CNN High-end PC (assumed) Cells 93–99 Not reported in the paper 
[14] CNN Nvidia Tesla K40c GPU Cells 99 Not reported in the paper 
[11] Mask-RCNN Nvidia RTX 2080 Ti GPU Cells 73 Not reported in the paper 
[10] YoloV5 Intel Core i7-12650H Droplet 99.3@0.5 74.3 ms 
This work Customized YoloV4-tiny RPi5 Droplet 99.95@0.5 13 ms 
This work YoloV5-s RPi5 Droplet 92.10@0.5 208.5 ms 
This work YoloV5-s MaixCam Droplet 55.09@0.5 5.34 ms 

 

  Table 3. Combinations of machine learning models and their deployments 
 
 
         Reference                        Model                                 Platform                      Object         mAP, %       Average inference processing  
                                                                                                                                                                                   time per image 



tiny and YoloV8­nano may enhance accuracy while remain ­
ing efficient for edge deployment, though their optimization 
for our target hardware requires further investigation.  

While we experimented with three different platforms, it 
should be noted that the landscape of edge AI hardware is 
rapidly evolving. For example, the recent Hailo­8 HAT for 
the RPi5 promises up to 26 TOPS (INT8). These devel opments 
offer promising avenues for further decreasing processing 
time while balancing accuracy; however, it is also essential 
to consider the maturity of these new solutions. Their in ­
tegration (including the necessary software tools) into spe ­
cialized scientific applications, such as IFC devices, will 
require additional careful evaluation and testing. We will 
investigate these issues in our future work. 
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Konvolutsioonilistel närvivõrkudel (CNN) põhinev mikrofluidsete tilkade 
klassifitseerimine portatiivsetes voolutsütomeetrites 

Fariha Afrin, Yannick Le Moullec, Tamas Pardy ja Toomas Rang 

Tilkade klassifitseerimine on oluline aspekt pilditöötlust sisaldavate voolutsütomeetrite arendamisel. 
Süvaõppe algoritmid on võimelised avastama ja klassifitseerima tilku suuremõõtmelistes laboriseadmetes, 
kuid sarnase tehnoloogia rakendamine portatiivsetes seadmetes kujutab endast suurt väljakutset, kuna 
nende arvutusvõimsus ei vasta kompaktsete seadmete arvutusvõimekusele. See on oluline takistus ülemi-
nekul statsionaarsetelt laboriseadmetelt välioludes kasutatavatele portatiivsetele lahendustele. Takistuse 
ületamiseks tutvustame artiklis kohandatud YoloV4-tiny mudelit, mida on rakendatud Raspberry Pi-5 (RPi5) 
platvormil. 

Närvivõrgupõhist lahendust treeniti 878 erineva kujutise abil, mis pärinesid 975 kujutisega kohandatud 
andmehulgast. See andmehulk koguti meie loodud reaalse eksperimentaalse mikrofluidikaseadmega. Tulemusi 
hindasime interferentsiaja ja keskmise täpsuse (mAP – mean average precision) alusel. Loodud lahendus 
suutis edukalt klassifitseerida kolme selgelt eristatavat olukorda (tilk puudub, üks tilk, mitu tilka) 13 ms jook-
sul, saavutades keskmise täpsuse 99,95% lävendiga 0.5 (mAP@0,5). Samuti võrdlesime kohandatud YoloV4-
tiny mudelit seitsme masinõppemudeli (ML) ja platvormi kombinatsiooniga, sealhulgas uusima, kompaktse ja 
soodsa tensoritöötlusega tippseadmega (MaixCam plaat koos LicheeRV Nano mooduli / SOPHGO SG2002-ga), 
mis kasutab YoloV5 algoritmi. YOLOv4-tiny RPi5 lahendust võrdlesime YOLOv5-s mudeli ja MaixCam plat-
vormi kombinatsiooniga. Tänu lisatud tensoritöötluse algoritmile lühenes klassifitseerimise aeg 5,34 ms-ni, 
saavutades keskmise täpsuse 55,09% juhtudest lävendiga 0,5 (mAP@0,5). Täpsuse protsentuaalne vähene-
mine on tingitud kvantimisest. Uuring näitab, et süsteemi täpse disainimise abil on võimalik saavutada tasa-
kaal täpsuse ja kiiruse vahel, võimaldades mikrofluidsete tilkade usaldusväärset klassifitseerimist ka piiratud 
arvutusvõimekusega portatiivsetes voolutsütomeetrites. 
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