This article addresses frequent instability issues observed in the operation of typical residential photovoltaic (PV) microinstallations through a new approach to energy storage system (ESS) design. Based on high-resolution, long-term recordings of power fluctuations in a residential PV installation located in Tallinn, Estonia, various instability problems are identified and analyzed. A mixed ESS is proposed to provide rapid and effective compensation for the detected fluctuations. The study introduces a hybrid energy storage solution combining supercapacitors and batteries to mitigate these issues and ensure balanced system operation. Specifically, an innovative 32 Wh supercapacitor bank, integrated with the DC link of a standard PV inverter, is proposed to address both short- and long-term power fluctuations on the generation side. Peaks and dips in power consumption and generation are detected using a Z-score-based peak detection method. Experimental results comparing different ESS configurations are presented and discussed. Furthermore, the study demonstrates how the supercapacitor bank successfully mitigates several instances of generation fluctuations. The paper also explores how the incorporation of a supercapacitor ESS in a DC microgrid can affect battery lifespan, in addition to stabilizing PV generation.
1. SolarPower Europe. EU Market Outlook for Solar Power 2023–2027.
https://www.solarpowereurope.org/insights/outlooks/eu-market-outlook-for-solar-power-2023-2027 (accessed 2024-12-12).
2. IEO. Photovoltaics Market in Poland 2023. Warsaw, 2023.
3. Volkova, A., Kisel, E., Grünvald, O., Veske, A., Sukumaran, S. and Purga, J. Estonian energy roadmap to carbon neutrality. Int. J. Sustain. Energy Plan. Manag., 2023, 38, 30–46.
https://doi.org/10.54337/ijsepm.7568
4. Huld, T., Bódis, K., Pinedo Pascua, I., Dunlop, E., Taylor, N. and Jäger-Waldau, A. The rooftop potential for PV systems in the European Union to deliver the Paris Agreement. European Commission, Joint Research Centre Directorate C: Energy, Transport and Climate, Energy Efficiency and Renewables Unit report, 2018.
5. Chen, L., Chen, H., Li, Y., Li, G., Yang, J., Liu, X. et al. SMES-battery energy storage system for the stabilization of a photovoltaic-based microgrid. IEEE Trans. Appl. Supercond., 2018, 28(4), 5700407.
https://doi.org/10.1109/TASC.2018.2799544
6. Saxena, P., Singh, N. and Pandey. A. K. Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system. J. Energy Storage, 2020, 31, 101613.
http://dx.doi.org/10.1016/j.est.2020.101613
7. Liu, X., Suo, Y., Song, X., Zhou, J. and Qu, Y. Large-signal stabilization method for islanded DC microgrids considering battery and supercapacitor hybrid energy storage systems. Electronics, 2022, 11(18), 2823.
http://dx.doi.org/10.3390/electronics11182823
8. Hasan, S., Chub, A., Blinov, A. and Vinnikov, D. Implementation issues of droop controlled DC nanogrids: state of charge management of battery energy storage and impact of sensor gain tolerance. In 2024 IEEE 65th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 10–12 October 2024. IEEE, 2025, 1–6.
https://doi.org/10.1109/RTUCON62997.2024.10830832
9. Shivashankar, S. Mekhilef, S., Mokhlis, H. and Karimi, M. Mitigating methods of power fluctuation of photovoltaic (PV) sources – a review. Renew. Sustain. Energy Rev., 2016, 59, 1170–1184.
https://doi.org/10.1016/j.rser.2016.01.059
10. Khan, S. T., Joshi, V. R., Bhardwaj, D., Sharma, S. K., Waheed, S. A. and Sharma, D. K. Mitigating voltage fluctuations in grid-tied PV systems: power quality enhancement, In 2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), Phuket, Thailand, 14–16 June 2024. IEEE, 2024, 407–416.
https://doi.org/10.1109/ICCMSO61761.2024.00086
11. Yang, Y., Zhi, P. and Zhu, W. A photovoltaic power fluctuation design based on moving average algorithm and supercapacitor coordinated control strategy. In 2022 41st Chinese Control Conference (CCC), Hefei, China, 25–27 July 2022. IEEE, 2022, 5159–5164.
https://doi.org/10.23919/CCC55666.2022.9902173
12. Jiménez-Ortega, E., Santoso, S. and Madrigal-Martínez, M. Mitigation of PV voltage fluctuations using adaptive moving average and volt-var control. In 2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT), Austin, USA, 8–9 November 2022. IEEE, 2022, 1–5.
https://doi.org/10.1109/EESAT55007.2022.9998023
13. Hossain, Md. B., Islam, Md. R., Muttaqi, K. M., Sutanto, D. and Agalgaonkar, A. P. A novel strategy for fast fluctuations compensation of PV powered grid-interactive microgrid. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), Arad, Romania, 20–22 May 2022. IEEE, 2022, 810–816.
https://doi.org/10.1109/GlobConET53749.2022.9872366
14. Solanki, S. G., Ramachandaramurthy, V. K., Shing, N. Y. K., Tan, R. H. G., Tariq, M. and Thanikanti, S. B. 2019. Power smoothing techniques to mitigate solar intermittency. In 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India, 8–10 November 2019. IEEE, 2020, 1–6.
https://doi.org/10.1109/UPCON47278.2019.8980080
15. Yang, H.-K., Joo, D., Noh, Y.-S., Hyon, B. J. and Kim, J.-H. Variability mitigation for grid stabilizing of PV systems with power limit control. In 2024 12th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 27–29 May 2024. IEEE, 2024, 350–354.
https://doi.org/10.1109/icSmartGrid61824.2024.10578243
16. Rogowski, S., Hasan, S., Chub, A., and Sibiński, M. Assessment of mixed energy storage system considering high spatial resolution data from a real PV installation. In 2024 19th Biennial Baltic Electronics Conference, BEC, Tallinn, Estonia, 2–4 October 2024. IEEE, 2024, 1–6.
https://doi.org/10.1109/BEC61458.2024.10737964
17. Merrington, S., Khezri, R. and Mahmoudi, A. Optimal sizing of grid‐connected rooftop photovoltaic and battery energy storage for houses with electric vehicle. IET Smart Grid, 2023, 6(3), 297–311.
https://doi.org/10.1049/stg2.12099
18. Kouro, S., Leon, J. I., Vinnikov, D. and Franquelo, L. G. Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag., 2015, 9(1), 47–61.
https://doi.org/10.1109/MIE.2014.2376976
19. Vinnikov, D., Chub, A., Korkh, O., Liivik, E., Blaabjerg, F. and Kouro, S. MPPT performance enhancement of low-cost PV microconverters. Solar Energy, 2019, 187, 156–166.
https://doi.org/10.1016/j.solener.2019.05.024
20. Sidorov, V., Chub, A. and Vinnikov, D. High-efficiency quad-mode parallel PV power optimizer for DC microgrids. IEEE Trans. Ind. Appl., 2023, 59(1), 1002–1012.
https://doi.org/10.1109/TIA.2022.3208879
21. Sidorov, V., Chub, A., Vinnikov, D. and Lindvest, A. Novel universal power electronic interface for integration of PV modules and battery energy storages in residential DC microgrids. IEEE Access, 2023, 11, 30845–30858.
https://doi.org/10.1109/ACCESS.2023.3260640
22. Vinnikov, D., Chub, A., Kosenko, R., Sidorov, V. and Lindvest, A. Implementation of global maximum power point tracking in photovoltaic microconverters: a survey of challenges and opportunities. IEEE J. Emerg. Sel. Top. Power Electron., 2023, 11(2), 2259–2280.
https://doi.org/10.1109/JESTPE.2021.3137521
23. Hasan, S., Blinov, A., Chub, A. and Vinnikov, D. PV Generation and Consumption Dataset of an Estonian Residential Dwelling. TalTech Data Repository, 2024.
https://doi.org/10.1038/s41597-025-04747-w
24. Dulout, J., Jammes, B., Seguier, L. and Alonso, C. Control and design of a hybrid energy storage system. In 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva Switzerland, 8–10 September 2015. IEEE, 2015, 1–9.
https://doi.org/10.1109/EPE.2015.7309468
25. Rogowski, S., Sibiński, M. and Garlikowski, K. Applications of supercapacitor systems in photovoltaic installations. Prz. Elektrotech., 2021, 97(12), 173–178.
http://dx.doi.org/10.15199/48.2021.12.36
26. Barelli, L., Bidini, G., Bonucci, F., Castellini, L., Castellini, S., Ottaviano, A. et al. Dynamic analysis of a hybrid energy storage system (H-ESS) coupled to a photovoltaic (PV) plant. Energies, 2018, 11(2), 396.
https://doi.org/10.3390/en11020396
27. Najaty Mazgar, F., Tarafdar Hagh, M. and Tohidi, S. 2021. ESS equipped DFIG wind farm with coordinated power control under grid fault conditions. J. Power Electron., 2020, 21(1), 173–183.
http://dx.doi.org/10.1007/s43236-020-00177-6
28. Maxwell Technologies. Maxwell 3.0V 3400F Ultracapacitor Cell (BCAP3400 P300 K04/05).
https://maxwell.com/wp-content/uploads/2022/11/3003273-EN.2_DS_3V-3400F-Cell-BCAP3400-P300.pdf (accessed 2024-06-11).
29. Hasan, S., Chub, A., Vinnikov, D. and Blinov, A. Study of battery energy storage operation in droop-controlled residential DC nanogrid. In 2024 IEEE 18th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Gdynia, Poland, 24–26 June 2024. IEEE, 2024, 1–5.
https://doi.org/10.1109/CPE-POWERENG60842.2024.10604364
30. Muzaffar, A., Ahamed, M. B. and Hussain, C. M. Testing and measurement techniques for supercapacitors. In Smart Supercapacitors (Hussain, C. M. and Ahamed, M. B., eds). Elsevier, 2023, 651–672.
https://doi.org/10.1016/B978-0-323-90530-5.00010-1
31. Lakshmi, K. C. S. and Vedhanarayanan, B. High-performance supercapacitors: a comprehensive review on paradigm shift of conventional energy storage devices. Batteries, 2023, 9(4), 202.
https://doi.org/10.3390/batteries9040202
32. Maxwell Technologies. User Manual: Integration Kit for Maxwell Technologies® BOOSTCAP® Ultracapacitors. Maxwell Technologies, Inc., 2007.
33. Rogowski, S. Optymalizacja pracy instalacji fotowoltaicznej przy wykorzystaniu nowego typu układów przetwarzania i magazynowania energii elektrycznej. PhD dissertation. Politechnika Łódzka, Poland, 2024.
34. Bakeer, A., Chub, A., Shen, Y. and Sangwongwanich, A. Reliability analysis of battery energy storage system for various stationary applications. J. Energy Storage, 2022, 50, 104217.
https://doi.org/10.1016/j.est.2022.104217