ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Enhancement of residential PV energy storage system by supercapacitor battery – high spatial resolution data analysis; pp. 269–280
PDF | https://doi.org/10.3176/proc.2025.2S.01

Authors
Szymon Rogowski ORCID Icon, Sayeed Hasan, Andrii Chub, Maciej Sibiński
Abstract

This article addresses frequent instability issues observed in the operation of typical residential photovoltaic (PV) microinstallations through a new approach to energy storage system (ESS) design. Based on high-resolution, long-term recordings of power fluctuations in a residential PV installation located in Tallinn, Estonia, various instability problems are identified and analyzed. A mixed ESS is proposed to provide rapid and effective compensation for the detected fluctuations. The study introduces a hybrid energy storage solution combining supercapacitors and batteries to mitigate these issues and ensure balanced system operation. Specifically, an innovative 32 Wh supercapacitor bank, integrated with the DC link of a standard PV inverter, is proposed to address both short- and long-term power fluctuations on the generation side. Peaks and dips in power consumption and generation are detected using a Z-score-based peak detection method. Experimental results comparing different ESS configurations are presented and discussed. Furthermore, the study demonstrates how the supercapacitor bank successfully mitigates several instances of generation fluctuations. The paper also explores how the incorporation of a supercapacitor ESS in a DC microgrid can affect battery lifespan, in addition to stabilizing PV generation.

References

1. SolarPower Europe. EU Market Outlook for Solar Power 2023–2027
https://www.solarpowereurope.org/insights/outlooks/eu-market-outlook-for-solar-power-2023-2027 (accessed 2024-12-12). 

2. IEO. Photovoltaics Market in Poland 2023. Warsaw, 2023.

3. Volkova, A., Kisel, E., Grünvald, O., Veske, A., Sukumaran, S. and Purga, J. Estonian energy roadmap to carbon neutrality. Int. J. Sustain. Energy Plan. Manag., 2023, 38, 30–46. 
https://doi.org/10.54337/ijsepm.7568  

4. Huld, T., Bódis, K., Pinedo Pascua, I., Dunlop, E., Taylor, N. and Jäger-Waldau, A. The rooftop potential for PV systems in the European Union to deliver the Paris Agreement. European Commission, Joint Research Centre Directorate C: Energy, Transport and Climate, Energy Efficiency and Renewables Unit report, 2018.

5. Chen, L., Chen, H., Li, Y., Li, G., Yang, J., Liu, X. et al. SMES-battery energy storage system for the stabilization of a photovoltaic-based microgrid. IEEE Trans. Appl. Supercond., 2018, 28(4), 5700407. 
https://doi.org/10.1109/TASC.2018.2799544  

6. Saxena, P., Singh, N. and Pandey. A. K. Enhancing the dynamic performance of microgrid using derivative controlled solar and energy storage based virtual inertia system. J. Energy Storage, 2020, 31, 101613. 
http://dx.doi.org/10.1016/j.est.2020.101613  

7. Liu, X., Suo, Y., Song, X., Zhou, J. and Qu, Y. Large-signal stabilization method for islanded DC microgrids considering battery and supercapacitor hybrid energy storage systems. Electronics, 2022, 11(18), 2823. 
http://dx.doi.org/10.3390/electronics11182823  

8. Hasan, S., Chub, A., Blinov, A. and Vinnikov, D. Implementation issues of droop controlled DC nanogrids: state of charge management of battery energy storage and impact of sensor gain tolerance. In 2024 IEEE 65th International Scientific Conference on Power and Electrical Engineering of Riga Technical Uni­versity (RTUCON), Riga, Latvia, 10–12 October 2024. IEEE, 2025, 1–6. 
https://doi.org/10.1109/RTUCON62997.2024.10830832  

9. Shivashankar, S. Mekhilef, S., Mokhlis, H. and Karimi, M. Mitigating methods of power fluctuation of photovoltaic (PV) sources – a review. Renew. Sustain. Energy Rev., 2016, 59, 1170–1184. 
https://doi.org/10.1016/j.rser.2016.01.059  

10. Khan, S. T., Joshi, V. R., Bhardwaj, D., Sharma, S. K., Waheed, S. A. and Sharma, D. K. Mitigating voltage fluctuations in grid-tied PV systems: power quality enhancement, In 2024 3rd International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), Phuket, Thailand, 14–16 June 2024. IEEE, 2024, 407–416. 
https://doi.org/10.1109/ICCMSO61761.2024.00086  

11. Yang, Y., Zhi, P. and Zhu, W. A photovoltaic power fluctuation design based on moving average algorithm and supercapacitor coordinated control strategy. In 2022 41st Chinese Control Con­ference (CCC), Hefei, China, 25–27 July 2022. IEEE, 2022, 5159–5164. 
https://doi.org/10.23919/CCC55666.2022.9902173  

12. Jiménez-Ortega, E., Santoso, S. and Madrigal-Martínez, M. Mitigation of PV voltage fluctuations using adaptive moving average and volt-var control. In 2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT), Austin, USA, 8–9 November 2022. IEEE, 2022, 1–5. 
https://doi.org/10.1109/EESAT55007.2022.9998023  

13. Hossain, Md. B., Islam, Md. R., Muttaqi, K. M., Sutanto, D. and Agalgaonkar, A. P. A novel strategy for fast fluctuations com­pensation of PV powered grid-interactive microgrid. In 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET), Arad, Romania, 20–22 May 2022. IEEE, 2022, 810–816. 
https://doi.org/10.1109/GlobConET53749.2022.9872366  

14. Solanki, S. G., Ramachandaramurthy, V. K., Shing, N. Y. K., Tan, R. H. G., Tariq, M. and Thanikanti, S. B. 2019. Power smoothing techniques to mitigate solar intermittency. In 2019 International Conference on Electrical, Electronics and Com­puter Engineering (UPCON), Aligarh, India, 8–10 November 2019. IEEE, 2020, 1–6. 
https://doi.org/10.1109/UPCON47278.2019.8980080  

15. Yang, H.-K., Joo, D., Noh, Y.-S., Hyon, B. J. and Kim, J.-H. Variability mitigation for grid stabilizing of PV systems with power limit control. In 2024 12th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 27–29 May 2024. IEEE, 2024, 350–354. 
https://doi.org/10.1109/icSmartGrid61824.2024.10578243

16. Rogowski, S., Hasan, S., Chub, A., and Sibiński, M. Assessment of mixed energy storage system considering high spatial res­o­lution data from a real PV installation. In 2024 19th Biennial Baltic Electronics Conference, BEC, Tallinn, Estonia, 2–4 October 2024. IEEE, 2024, 1–6. 
https://doi.org/10.1109/BEC61458.2024.10737964   

17. Merrington, S., Khezri, R. and Mahmoudi, A. Optimal sizing of grid‐connected rooftop photovoltaic and battery energy storage for houses with electric vehicle. IET Smart Grid, 2023, 6(3), 297–311. 
https://doi.org/10.1049/stg2.12099  

18. Kouro, S., Leon, J. I., Vinnikov, D. and Franquelo, L. G. Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag., 2015, 9(1), 47–61. 
https://doi.org/10.1109/MIE.2014.2376976  

19. Vinnikov, D., Chub, A., Korkh, O., Liivik, E., Blaabjerg, F. and Kouro, S. MPPT performance enhancement of low-cost PV microconverters. Solar Energy, 2019, 187, 156–166. 
https://doi.org/10.1016/j.solener.2019.05.024  

20. Sidorov, V., Chub, A. and Vinnikov, D. High-efficiency quad-mode parallel PV power optimizer for DC microgrids. IEEE Trans. Ind. Appl., 2023, 59(1), 1002–1012. 
https://doi.org/10.1109/TIA.2022.3208879  

21. Sidorov, V., Chub, A., Vinnikov, D. and Lindvest, A. Novel universal power electronic interface for integration of PV modules and battery energy storages in residential DC microgrids. IEEE Access, 2023, 11, 30845–30858. 
https://doi.org/10.1109/ACCESS.2023.3260640  

22. Vinnikov, D., Chub, A., Kosenko, R., Sidorov, V. and Lindvest, A. Implementation of global maximum power point tracking in photovoltaic microconverters: a survey of challenges and opportunities. IEEE J. Emerg. Sel. Top. Power Electron., 2023, 11(2), 2259–2280. 
https://doi.org/10.1109/JESTPE.2021.3137521  

23. Hasan, S., Blinov, A., Chub, A. and Vinnikov, D. PV Generation and Consumption Dataset of an Estonian Residential Dwelling. TalTech Data Repository, 2024. 
https://doi.org/10.1038/s41597-025-04747-w  

24. Dulout, J., Jammes, B., Seguier, L. and Alonso, C. Control and design of a hybrid energy storage system. In 2015 17th Euro­pean Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva Switzerland, 8–10 September 2015. IEEE, 2015, 1–9. 
https://doi.org/10.1109/EPE.2015.7309468  

25. Rogowski, S., Sibiński, M. and Garlikowski, K. Applications of supercapacitor systems in photovoltaic installations. Prz. Elektrotech., 2021, 97(12), 173–178. 
http://dx.doi.org/10.15199/48.2021.12.36  

26. Barelli, L., Bidini, G., Bonucci, F., Castellini, L., Castellini, S., Ottaviano, A. et al. Dynamic analysis of a hybrid energy storage system (H-ESS) coupled to a photovoltaic (PV) plant. Energies, 2018, 11(2), 396. 
https://doi.org/10.3390/en11020396  

27. Najaty Mazgar, F., Tarafdar Hagh, M. and Tohidi, S. 2021. ESS equipped DFIG wind farm with coordinated power control under grid fault conditions. J. Power Electron., 2020, 21(1), 173–183. 
http://dx.doi.org/10.1007/s43236-020-00177-6  

28. Maxwell Technologies. Maxwell 3.0V 3400F Ultracapacitor Cell (BCAP3400 P300 K04/05)
https://maxwell.com/wp-content/uploads/2022/11/3003273-EN.2_DS_3V-3400F-Cell-BCAP3400-P300.pdf (accessed 2024-06-11).

29. Hasan, S., Chub, A., Vinnikov, D. and Blinov, A. Study of battery energy storage operation in droop-controlled residential DC nanogrid. In 2024 IEEE 18th International Conference on Com­patibility, Power Electronics and Power Engineering (CPE-POWERENG), Gdynia, Poland, 24–26 June 2024. IEEE, 2024, 1–5. 
https://doi.org/10.1109/CPE-POWERENG60842.2024.10604364  

30. Muzaffar, A., Ahamed, M. B. and Hussain, C. M. Testing and measurement techniques for supercapacitors. In Smart Supercapacitors (Hussain, C. M. and Ahamed, M. B., eds). Elsevier, 2023, 651–672.
https://doi.org/10.1016/B978-0-323-90530-5.00010-1

31. Lakshmi, K. C. S. and Vedhanarayanan, B. High-performance supercapacitors: a comprehensive review on paradigm shift of conventional energy storage devices. Batteries, 2023, 9(4), 202. 
https://doi.org/10.3390/batteries9040202  

32. Maxwell Technologies. User Manual: Integration Kit for Maxwell Technologies® BOOSTCAP® Ultracapacitors. Maxwell Technologies, Inc., 2007.

33. Rogowski, S. Optymalizacja pracy instalacji fotowoltaicznej przy wykorzystaniu nowego typu układów przetwarzania i magazynowania energii elektrycznej. PhD dissertation. Politechnika Łódzka, Poland, 2024.

34. Bakeer, A., Chub, A., Shen, Y. and Sangwongwanich, A. Reliability analysis of battery energy storage system for various sta­tionary applications. J. Energy Storage, 2022, 50, 104217. 
https://doi.org/10.1016/j.est.2022.104217

Back to Issue