ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Ritz formulation for the wave propagation analysis of axially functionally graded carbon nanotubes; pp. 234–239
PDF | https://doi.org/10.3176/proc.2025.2.27

Authors
Mustafa Arda, Tamer Tosun
Abstract

Longitudinal wave propagation in axially functionally graded carbon nanotubes was investigated using three different solution methods: analytical, higher order Haar wavelet and Ritz methods. The results of the various solution methods were compared and validated. A weak form solution for the wave frequency was presented using the Lagrangian energy functional and the Ritz method. Exponential and power-law material grading variations were considered. Material grading parameters and grading nonlocality effects on the axial wave propagation frequency were investigated. The present study could be useful in the wave dynamic analysis of axially graded nanostructures.

References

1. Dai, L., Huang, Z., Huang, Q., Zhao, C., Rozhin, A., Sergeyev, S. et al. Carbon nanotube mode-locked fiber lasers: recent progress and perspectives.Nanophotonics, 2021, 10(2), 749–775. 
https://doi.org/10.1515/nanoph-2020-0446  

2. Eringen, A. C. Nonlocal Continuum Field Theories. Springer, New York, 2002. 
https://doi.org/10.1007/B97697  

3. Xue, C.-X. and Pan, E. On the longitudinal wave along a functionally graded magneto-electro-elastic rod. Int. J. Eng. Sci., 2013, 62, 48–55. 
https://doi.org/10.1016/j.ijengsci.2012.08.004  

4. Narendar, S. Wave dispersion in functionally graded magneto-electro-elastic nonlocal rod. Aerosp. Sci. Technol., 2016, 51, 42–51. 
https://doi.org/10.1016/j.ast.2016.01.012  

5. Mirzajani, M., Khaji, N. and Hori, M. Stress wave propagation analysis in one-dimensional micropolar rods with variable cross-section using micropolar wave finite element method. Int. J. Appl. Mech., 2018, 10(4), 1–28. 
https://doi.org/10.1142/S1758825118500394  

6. Hadji, L., Avcar, M. and Civalek, Ö. An analytical solution for the free vibration of FG nanoplates. J. Braz. Soc. Mech. Sci. Eng., 2021, 43(9), 418. 
https://doi.org/10.1007/s40430-021-03134-x  

7. Civalek, Ö. and Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput., 2022, 38(S1), 489–521. 
https://doi.org/10.1007/s00366-020-01168-8  

8. Rayleigh, J. W. S. B. and Lindsay, R. B. The Theory of SoundVolume 1 of Dover Books on Physics. Courier Corporation, Dover, 1945.

9. Arda, M. Axial dynamics of functionally graded Rayleigh–Bishop nanorods. Microsyst. Technol., 2021, 27(1), 269–282. 
https://doi.org/10.1007/s00542-020-04950-2  

10. Arda, M. Vibration of axially graded Timoshenko-Ehrenfest nanobeam with follower force. In NanoTR-16 Book of Abstract. Middle East Technical University, Ankara, 2022.

11. Arda, M. and Aydogdu, M. A Ritz formulation for vibration analysis of axially functionally graded Timoshenko–Ehrenfest beams. J. Comput. Appl. Mech., 2022, 53, 102–115. 
https://doi.org/10.22059/jcamech.2022.334062.667  

12. Wright, E. M. Approximate Methods of Higher Analysis. By L. V. Kantorovich and V. I. Krylov. Translated from the 3rd Russian Edition by C. D. Benster. Pp. 681. 1958. (Groningen, Noordhoff). Math. Gaz., 1960, 44(348), 145–145. 
https://doi.org/10.2307/3612589  

13. Arda, M., Majak, J. and Mehrparvar, M. Longitudinal wave propagation in axially graded Raylegh–Bishop nanorods. Mech. Compos. Mater., 2024, 59(6), 1109–1128. 
https://doi.org/10.1007/s11029-023-10160-4  

14. Cattani, C. The wavelet-based technique in dispersive wave propagation. Int. Appl. Mech., 2003, 39(4), 493–501. 
https://doi.org/10.1023/A:1024943605379  

15. Majak, J., Pohlak, M., Karjust, K., Eerme, M., Kurnitski, J. and Shvartsman, B. S. New higher order Haar wavelet method: application to FGM structures. Compos. Struct., 2018, 201, 72–78. 
https://doi.org/10.1016/j.compstruct.2018.06.013  

16. Majak, J., Pohlak, M., Eerme, M. and Shvartsman, B. Solving ordinary differential equations with higher order Haar wavelet method. AIP Conference Proceedings, 2019, 2116(1), 330002. 
https://doi.org/10.1063/1.5114340  

17. Majak, J., Shvartsman, B., Ratas, M., Bassir, D., Pohlak, M., Karjust, K. et al. Higher-order Haar wavelet method for vibration analysis of nanobeams. Mater. Today Commun., 2020, 25, 101290. 
https://doi.org/10.1016/j.mtcomm.2020.101290  

18. Ratas, M. and Salupere, A. Application of higher order Haar wavelet method for solving nonlinear evolution equations. Math. Model. Anal., 2020, 25(2), 271–288. 
https://doi.org/10.3846/mma.2020.11112

Back to Issue