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ABSTRACT  
Longitudinal wave propagation in axially functionally graded carbon nanotubes was in -
vestigated using three different solution methods: analytical, higher order Haar wavelet and 
Ritz methods. The results of the various solution methods were compared and validated. 
A weak form solution for the wave frequency was presented using the Lagrangian energy 
functional and the Ritz method. Exponential and power-law material grading variations were 
considered. Material grading parameters and grading nonlocality effects on the axial wave 
propagation frequency were investigated. The present study could be useful in the wave 
dynamic analysis of axially graded nanostructures.  

1. Introduction
Functionally graded nanostructures have become popular in recent years. 
Designable material properties are the most important advantage of the func ­
tionally graded materials. Axially graded carbon nanotubes (CNTs) are a type 
of these materials and have great potential in the production of fiber optics 
with improved signal transmission capabilities [1]. 

Wave propagation in nanoscale structures has been an interesting topic 
discussed by scientists for the last 70 years. Eringen mentioned this important 
issue in his well­known “nonlocal elasticity theory” [2], which he developed  
in the 1960s. Wave propagation in axially graded nanostructures has different 
characteristics and should be investigated using the continuum mechanics 
approach. Wave propagation in axially graded rods has been in vestigated in 
the previous work of Xue and Pan [3]. At the nanoscale, Narendar [4] studied 
the elastic wave propagation in exponentially graded magneto­electro­elastic 
nanorods. The micropolar finite element method for wave propagation analy ­
sis in variable cross­sectional nanorods was proposed in [5]. Functionally 
graded nano structures [6] and CNT­reinforced composites [7] have been 
studied by re searchers.     

The present study investigates the wave propagation solution of axially 
graded CNTs. Material properties such as Young’s modulus, density and 
nonlocality are examined in an axially functionally graded form. Grading 
nonlocality has been rarely studied in the literature. Weak energy formulation 
and the nonlocal elasticity theory are used together in the modeling of wave 
dynamics. The approximate Ritz method is used in the solution of the wave 
equation. 

2. Analysis 
In the present study, the CNT with axially graded material properties is 
modeled as an axially functionally graded hollow rod. According to the 
Cartesian coordinate system, x­axis is in the length direction. Longitudinal 
(u(x,t)) displacement of the rod is defined using the Rayleigh rod theory [8]: 
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where t is time. Axial strain (εxx) and stress (σxx) relations of the rod are defined as: 
 
 
 

where E(x) is the Young’s modulus of the rod. Because of the length scale effect at the nanoscale, 
size­dependent nonlocal theories should be used in the continuum modeling of nanostructures. 
 
2.1. The nonlocal elasticity theory 
To capture the size effect at the nanoscale, Eringen’s nonlocal constitutive relation for stress gradient 
elasticity can be defined as [2]: 

 
 
 

where τkl is the nonlocal stress tensor, εrr is the sum of normal strains, δkl is the Kronecker delta, εkl 
is the strain tensor, λ and G are the Lamé constants, and μ(x) is called the nonlocal parameter. 
Equation (3) can be written in the following one­dimensional form using Eq. (2) for the axially 
graded CNT: 

 
 

 
2.2. Nonlocal energy formulation of the Rayleigh nanorod 
In the framework of the nonlocal Rayleigh rod theory, potential and kinetic energies of the nanorod 
can be written as [9]:                                              

 
 
 
 
 

where U and T are defined as the potential and kinetic energies of the nanorod, and a is the internal 
characteristic length, which is the distance between two atoms. The Lagrangian energy functional 
of the CNT can be defined using potential and kinetic energies: 

 
 
 

 
 
2.3. Functionally graded materials 
Functionally graded materials consist of at least two different materials. Variation of the material 
properties (elasticity modulus, density and nonlocal parameters) in the functionally graded structure 
are assumed in the exponential and power­law forms in the present study: 

 
 
 
 
 
 
 
 
 
Equation (8) defines the exponential material variation, and Eq. (9) defines the power­law 

material variation in the CNT. In Eq. (8), λ is the material gradient index, and in Eq. (9), E0, ρ0, μ0 
and E1, ρ1, μ1 are the material properties on the left and right side of the CNT; y is the power­law 
parameter, and s is the material coefficient. 
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𝜀𝑥𝑥 = 𝜕𝑢(𝑥,𝑡)𝜕𝑥    ,   𝜎𝑥𝑥 = 𝐸(𝑥)𝜀𝑥𝑥, 

(1)

(2),

, ,

(1 − 𝜇(𝑥)𝛻2)𝜏𝑘𝑙 = 𝜆𝜀𝑟𝑟𝛿𝑘𝑙 + 2𝐺𝜀𝑘𝑙  ,       (3),

(1 − 𝜇(𝑥) 𝜕2𝜕𝑥2) 𝜎𝑥𝑥 = 𝐸(𝑥)𝜀𝑥𝑥. (4)

𝑈 = ∫ 𝐸(𝑥)𝐴 (𝜕𝑢(𝑥,𝑡)𝜕𝑥 )2 𝑑𝑥𝑎0  , (5),

𝑇 = ∫ 𝜌(𝑥)𝐴 (𝜕𝑢(𝑥,𝑡)𝜕𝑡 )2 𝑑𝑥𝑎0 − ∫ 𝜇(𝑥) 𝜕𝜕𝑥 (𝜌(𝑥)𝐴 𝜕𝑢(𝑥,𝑡)𝜕𝑡 ) 𝜕2𝑢(𝑥,𝑡)𝜕𝑥𝜕𝑡 𝑑𝑥𝑎0  , (6),

𝐿 = 𝑇 − 𝑈 = ∫ [𝜌(𝑥)𝐴 (𝜕𝑢(𝑥,𝑡)𝜕𝑡 )2 − 𝜇(𝑥) 𝜕𝜕𝑥 (𝜌(𝑥)𝐴 𝜕𝑢(𝑥,𝑡)𝜕𝑡 ) 𝜕2𝑢(𝑥,𝑡)𝜕𝑥𝜕𝑡 − 𝐸(𝑥)𝐴 (𝜕𝑢(𝑥,𝑡)𝜕𝑥 )2]𝑎0  (7).

[𝐸(𝑥)𝜌(𝑥)𝜇(𝑥)] = [𝐸0𝜌0𝜇0] 𝑒𝜆𝑥 , (8)

[𝐸(𝑥)𝜌(𝑥)𝜇(𝑥)] = [𝐸1 − 𝐸0𝜌1 − 𝜌0𝜇1 − 𝜇0] 𝑥𝑦 + [𝐸0𝜌0𝜇0]   ,   [𝐸1𝜌1𝜇1] = [𝐸0𝜌0𝜇0] 𝑠 . (9),



2.4. The Ritz method 
Axially graded rod structures have a governing equation of motion, which is a partial differential 
equation with variable material properties. A closed form solution of these types of differential 
equations cannot be obtained due to the variable coefficients. An approximate variational Ritz 
method can be used [9,10] in these instances. The longitudinal displacement function that is em ­
ployed in the Ritz method is defined below with the assumption of the harmonic wave function 
(u(x,t) = U(x)e–jωt) [11,12]: 

 
 
 

where Cm are the unknown coefficients of the polynomial, and φm(x) is the polynomial that satisfies 
at least the periodicity condition. φm(x–) is assumed to be in the Taylor series form and defined as 
follows: 

 
 
 
To determine the longitudinal wave frequency of the CNT, the Lagrangian energy functional of 

the nanorod in Eq. (7) should be minimized with respect to unknown coefficients  

3. Numerical results 
The longitudinal wave propagation frequency of axially graded CNTs was investigated in this 
section. The effect of material gradient parameters on the wave propagation frequency of a nanotube 
was studied. The material property parameters of the CNT were assumed in a non­dimensional 
form. Numerical results were obtained in four different case studies: local non­grading, local 
grading, non­grading nonlocality, and grading nonlocality.   

Three different solution methods were used in the analysis. First, the analytical solution was 
obtained for the exponential material variation in the non­grading nonlocality case. In the grading 
nonlocality case, a closed­form solution could not be obtained because of the variable nonlocal 
parameter in the inertia terms. The second and third methods were the higher order Haar wavelet 
method (HOHWM) [13] and the Ritz method, which were compared with the analytical results for 
validation. The HOHWM has become very popular in recent years and has been used in the static 
and dynamic analyses of nanostructures in several papers [14–18]. 

In Table 1, the longitudinal wave propagation frequencies at the end of the first Brillouin zone 
for different solution methods are presented. In the non­grading case, all solution methods give the 
same result. In the grading case, the analytical and HOHWM results coincide, but the Ritz method 
differs by a small percentage (<1%). 

In Table 2, the convergence rates (Eq. (12)) of the HOHWM and Ritz methods are compared in 
exponentially non­grading and grading nonlocality cases. The J parameter is defined as the number 
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 Non-grading (� = 0) Exponential grading (� = 1) 
 Analytical HOHWM (J = 6) Ritz (J = 6) Analytical HOHWM (J = 6) Ritz (J = 6) 
��= 0 3.1416 3.1416 3.1416 3.1802 3.1802 3.1812 
��= 0.01 2.9972 2.9972 2.9972 3.0577 3.0577 3.0311 

 

J � = 1, � = 0.01 � = 1, �0 = 0.01 
 HOHWM Ritz HOHWM Ritz 
 Freq. Conv. rate Freq. Conv. rate Freq. Conv. rate Freq. Conv. rate 

2 3.05783 4.0298 3.34591 7.4776 2.99491    11.0957 3.19551 8.6295 
3 3.05773 4.0079 3.29169 2.2392 2.99465  2.4115 3.17583 3.5792 
4 3.05772 4.0020 3.03570 5.9864 2.99460  2.1089 2.94066 7.5699 
5 3.05772 4.0005 3.03166 2.8859 2.99459  2.0234 2.93942 1.3607 
6 3.05772 4.0001 3.03111 5.5433 2.99459  2.0034 2.93894 7.9056 

 
Table 1. Comparison of the solution methods  

Table 2. Exponentially graded CNTs: frequencies and convergence rates 

� ��
������

�. 



of grid points in the CNT. The Ritz method shows good agreement with the HOHWM results, 
differing only by a small percentage. In the non­grading nonlocality case, HOHWM gives the fourth 
order convergence, which is normally expected. In the grading nonlocality case, the convergence 
rate drops to second order. The Ritz method could not achieve a certain convergence rate in non­
grading and grading nonlocality cases. Still, the frequency results of the HOHWM and Ritz methods 
are close to each other. 

 
 
 
 
In Table 3, the convergence rates for power­law grading can be seen. The difference between 

the HOHWM and Ritz methods increases slightly according to exponential grading. The difference 
in the frequency values increases to approximately 3% in the power­law variation. HOHWM 
approaches second­order convergence except in the weakened grading case (s = 0.5). The 
characteristics of the power­law variation are more effective than those of the exponential variation 
on the convergence rate.  

According to Tables 2 and 3, the convergence rates in the HOHWM approach 4 or 2, depending 
on the grading nonlocality, whereas the convergence rates of the Ritz method vary. This shows the 
significant difference between the strong and weak formulation solutions.  

Figure 1 shows the longitudinal wave propagation frequency variation of the CNT, which has 
exponentially grading material properties. The wave frequency characteristics mostly coincide in 
the HOHWM and Ritz methods. Enhancing material properties increases the frequency, while 
nonlocality decreases it. Grading nonlocality brings an additional softening effect on the structure, 
and frequency decreases. 
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Fig. 1.  Wave frequency variation in exponentially grading material. 

J S = 2, y = 2, � = 0.01 S = 2, y = 2, �0 = 0.01 
 HOHWM Ritz HOHWM Ritz 
 Freq. Conv. rate Freq. Conv. rate Freq. Conv. rate Freq. Conv. rate 

2 3.04147      4.5281 3.26866 8.0416 3.01480     10.4190 3.20070 8.8331 
3 3.04139    14.5169 3.23594 3.1105 3.01455       2.0995 3.18399 4.0053 
4 3.04139      1.9880 2.95338 6.3872 3.01450       2.0149 2.91566 7.2986 
5 3.04139      1.9995 2.95001 1.7880 3.01449       2.0022 2.91396 1.0231 
6 3.04139      2.0013 2.94903 4.7239 3.01449       2.0000 2.91312 5.4293 

 
Table 3. Power-law graded CNTs: frequencies and convergence rates 

 λ = 0, μ = 0 
 λ = 1, μ = 0 
 λ = 1, μ = 0.01 
 λ = 1, μ0 = 0.01

 λ = 0, μ = 0 
 λ = 1, μ = 0 
 λ = 1, μ = 0.01 
 λ = 1, μ0 = 0.01

HOHWM Ritz method

Wave numberWave number



In Fig. 2, the effect of power­law material grading on the wave frequency can be seen. Similarly 
with the exponential material grading, grading nonlocality decreases the wave frequency. Con ­
versely, the Ritz method shows a softening effect on the frequency without the nonlocal effect in 
the material grading cases. 

4. Conclusion 
Longitudinal wave propagation in axially graded carbon nanotubes was studied in the present work. 
Variations of material properties were assumed in exponential and power­law forms. The wave 
frequency was obtained using the analytical, higher order Haar wavelet and Ritz methods. The 
effects of material gradient parameters and grading nonlocality on the wave response of the axially 
graded carbon nanotube were investigated. As a novel approach, wave propagation was solved using 
weak energy formulation and the Ritz method. The results were compared and validated against 
closed and strong­form solutions. The present study could be useful in the wave dynamic analysis 
of axially graded nanostructures. 
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Ritzi meetod teljesihis funktsionaalselt gradueeritud süsiniknanotorude 
lainelevi analüüsiks 

Mustafa Arda ja Tamer Tosun 

Töös on uuritud teljesihis funktsionaalselt gradueeritud süsiniknanotorude pikilainete levikut, rakendades 
kolme lahendusmeetodit: analüütilist meetodit, kõrgemat järku Haari lainikuid ja Ritzi meetodit. Erinevate 
meetoditega saadud tulemusi on võrreldud ja analüüsitud. Lagrange’i energia funktsionaali ja Ritzi meetodi 
abil on tuletatud nõrgal formulatsioonil põhinev lahendusmeetod laine sageduse määramiseks. Rakendatud 
on nii eksponentsiaalseid kui ka astmelisi gradueerimisfunktsioone. Uuritud on materjali gradueerimispara-
meetrite ja mittelokaalsete efektide mõju pikilaine sagedusele. Töö pakub uusi võimalusi teljesihis graduee-
ritud nanostruktuuride lainedünaamika analüüsiks. 
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