ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Virtual factory model development for AI-driven optimization in manufacturing; pp. 228–233
PDF | https://doi.org/10.3176/proc.2025.2.26

Authors
Tõnis Raamets, Kristo Karjust, Aigar Hermaste, Karolin Kelpman
Abstract

This paper examines the development of a virtual factory model to optimize overall equipment effectiveness (OEE) in a planned manufacturing facility. Using digital simulations based on a wood manufacturing setup, AI-driven models can be applied to analyze specific OEE metrics, allowing for targeted identification of production bottlenecks and efficiency improvements. The virtual factory enabled scenario testing for the proposed facility, providing actionable insights without impacting current operations. The preliminary results indicate that AI integration within a virtual factory can significantly enhance planning and decision-making for future production investments.

References

1. Zhang, Y., Du, H., Piao, T., Shi, H. and Tsai, S.-B. How manufacturing companies can improve their competitiveness: re­search on service transformation and product innovation based on computer vision. J. Glob. Inf. Manag., 2024, 32(1), 1–26. 
https://doi.org/10.4018/JGIM.336485

2. Wan, J., Li, X., Dai, H. N., Kusiak, A., Martinez-Garcia, M. and Li, D. Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc. IEEE, 2021, 109(4), 377–398. 
https://doi.org/10.1109/JPROC.2020.3034808

3. Debevec, M., Simic, M. and Herakovic, N. Virtual factory as an advanced approach for production process optimization. Int. J. Simul. Model., 2014, 13(1), 66–78. 
https://doi.org/10.2507/IJSIMM13(1)6.260

4. Subramaniyan, M., Skoogh, A., Bokrantz, J., Sheikh, M. A., Thürer, M. and Chang, Q. Artificial intelligence for throughput bottleneck analysis – state-of-the-art and future directions. J. Manuf. Syst., 2021, 60, 734–751. 
https://doi.org/10.1016/j.jmsy.2021.07.021

5. Siemens. Plant simulation software. 
https://plm.sw.siemens.com/en-US/tecnomatix/plant-simulation-software/ (accessed 2025-05-02).

6. Raamets, T., Majak, J., Karjust, K., Mahmood, K. and Hermaste, A. Autonomous mobile robots for production logistics: a process optimization model modification. Proc. Estonian Acad. Sci., 2024, 73(2), 134–141. 
https://doi.org/10.3176/PROC.2024.2.06

7. Soori, M., Arezoo, B. and Dastres, R. Digital twin for smart manufacturing, a review. Sust. Manuf. Serv. Econ., 2023, 2, 100017. 
https://doi.org/10.1016/j.smse.2023.100017

8. Yang, J., Zheng, Y., Wu, J., Wang, Y., He, J. and Tang, L. Enhancing manufacturing excellence with digital-twin-enabled operational monitoring and intelligent scheduling. Appl. Sci., 2024, 14(15), 6622. 
https://doi.org/10.3390/APP14156622

9. Park, S., Maliphol, S., Woo, J. and Fan, L. Digital twins in Industry 4.0. Electronics, 2024, 13(12), 2258. 
https://doi.org/10.3390/ELECTRONICS13122258

10. Tšukrejev, P., Kruuser, K., Gorbachev, G., Karjust, K. and Majak, J. Real-time monitoring of solar modules manufacturing. Int. J. Eng. Res. Africa, 2020, 51, 9–13. 
https://doi.org/10.4028/WWW.SCIENTIFIC.NET/JERA.51.9

11. Vyskočil, J., Douda, P., Novák, P. and Wally, B. A digital twin-based distributed manufacturing execution system for Industry 4.0 with AI-powered on-the-fly replanning capabilities. Sustainability, 2023, 15(7), 6251. 
https://doi.org/10.3390/SU15076251

12. Mehrparvar, M., Majak, J. and Karjust, K. A comparative analysis of Fuzzy AHP and Fuzzy VIKOR methods for prioritization of the risk criteria of an autonomous vehicle system. Proc. Estonian Acad. Sci., 2024, 73(2), 116–123. 
https://doi.org/10.3176/proc.2024.2.04

13. Mehrparvar, M., Majak, J. and Karjust, K. Effect of aggregation methods in fuzzy technique for prioritization of criteria of automated vehicle system. AIP Conf. Proc., 2024, 2989, 020011. 
https://doi.org/10.1063/5.0189323

14. Thakur, P. S., Verma, R. K. and Tiwari, R. Analysis of time complexity of K-means and fuzzy C-means clustering algorithm. Eng. Math. Lett., 2024, 2024, 4.

15. Liu, Y., Zhang, Z., Jiang, S. and Ding, Y. Application of big data technology combined with clustering algorithm in manufacturing production analysis system. Decis. Mak.: Appl. Manag. Eng., 2024, 7(1), 237–253. 
https://doi.org/10.31181/DMAME712024897

Back to Issue