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Enhancing competitiveness and efficiency in manufacturing processes is a key 
priority in modern industry [1]. The optimization of production workflows through 
advanced technologies such as artificial intelligence (AI) and virtual factories offers 
innovative solutions for addressing bottlenecks and improving overall operational 
performance [2]. This study focuses on analyzing and optimizing the production 
processes of a wood manufacturing company by employing a virtual factory model 
augmented with AI­based tools [3]. In this study, the virtual factory evaluates a new 
manufacturing facility layout and production flows at the early design stage. Unlike 
previous studies that broadly explore AI applications in manufacturing [4], this 
research explicitly applies AI­driven clustering for real­time overall equipment ef ­
fectiveness (OEE) optimization in wood manufacturing. The novelty of this approach 
lies in proactively integrating AI clustering techniques to detect and mitigate bottle ­
necks in a virtual factory environment. This allows manufacturers to simulate and re ­
fine production strategies before implementation, ensuring data­driven im prove ments 
in efficiency and cost reduction. The research investigates the production process 
of wooden window frames and doors, encompassing computer numerical control 
(CNC)­based machining and assembly tasks, material impregnation, and painting 
workflows. The primary challenges include balancing production flows, optimizing 
equipment utilization, and enhancing quality control. Using the Siemens Tecnomatix 
Plant Simulation (STPS) platform, the production flows of the new facility were 
modeled, and the optimal allocation of workstations and production resources was 
assessed [5]. The findings demonstrate that the virtual factory model, combined with 
the AI­driven analysis, is an effective tool for optimizing manufactur ing processes. 

Proposed approach for production process optimization and 
analysis 
Optimizing production processes in wood manufacturing has become a critical re ­
quirement for ensuring competitiveness, operational efficiency, and adaptability to 
evolving demands. In the wood manufacturing industry, unique challenges arise due 
to the complexity of workflows, resource dependencies, and variability in product 
specifications. Addressing these challenges requires a systematic approach that com ­
bines cutting­edge tools and data­driven strategies. This study proposes a multi­
faceted methodology to tackle inefficiencies and enhance productivity within the 
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ABSTRACT  
This paper examines the development of a virtual factory model to optimize overall equipment 
effectiveness (OEE) in a planned manufacturing facility. Using digital simulations based on a 
wood manufacturing setup, AI-driven models can be applied to analyze specific OEE metrics, 
allowing for targeted identification of production bottlenecks and efficiency improvements. 
The virtual factory enabled scenario testing for the proposed facility, providing actionable 
insights without impacting current operations. The preliminary results indicate that AI in -
tegration within a virtual factory can significantly enhance planning and decision-making for 
future production investments. 
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wood manufacturing company’s operations. The proposed 
approach consists of three key components: (1) virtual factory 
modeling, (2) real­time data collection, and (3) AI­based 
analysis. STPS was used to create a digital twin of a wood 
manufacturing facility, in cluding CNC machining, material 
handling, and finishing workflows. The model was built using 
real­world production data provided by the company. We 
applied k­means clustering (k = 5, determined using the elbow 
method) to OEE data collected over three months to analyze 
production inef ficien cies. The clustering algorithm seg mented 
inefficiencies into meaningful categories, identifying under ­
performing work stations and recurring bottlenecks. The cluster 
validity was assessed based on the stability of identified 
workstation groups and their correlation with real production 
inef ficien cies observed in the factory. As part of the AI­driven 
analysis, we identified the five worst­performing (bottleneck) 
work stations and the five best­performing workstations based 
on the OEE metrics. These insights were visualized to high ­
light key areas for process optimization and efficiency im ­
prove ments. The identified bottleneck workstations exhibited 
higher idle times and lower throughput, whereas the best­
performing workstations demonstrated stable efficiency with 
minimal downtime. The proposed framework builds upon 
prior re search into the integration of virtual factory environ ­
ments with autonomous systems for production logistics 
optimiza tion [6]. Unlike previous approaches, this study fo ­
cuses specifically on AI­assisted decision­making within a 
virtual factory environment in the wood manufacturing 
sector. The combination of real­time monitoring and AI­
driven clus tering analysis enables manufacturers to pre ­
emptively adjust work flows, enhancing production efficiency 
and flex ibility. 

Figure 1 illustrates a systematic approach to optimizing 
production processes in the wood manufacturing industry. 
It highlights three key components: virtual factory, which 
enables the simulation and analysis of workflows; real­time 
data collection, which gathers operational data from the manu ­
facturing floor; and AI­based analysis, which processes data 
to identify bottlenecks, predict inefficiencies, and provide 
actionable insights. Inputs such as machine specifications, 
workflow details, and production goals feed into the system, 
while outputs include optimized workflows, balanced re ­
sources, and improved quality control. These elements create 
a scalable and cost­efficient framework for addressing inef ­
ficiencies and enhancing productivity. 
 
Integration of the virtual factory environments  
(case study) 
Virtual factories, developed like digital twins, are digital rep ­
resentations of physical manufacturing systems that enable 
detailed modeling, simulation, and optimization of production 
processes without disrupting real­world operations. These en ­
vironments allow manufacturers to analyze workflows, ma ­
chine interactions, material handling, and human resource 
allocation within the production line, facilitating informed 
decision­making and process improvements [7]. In this study, 
a comprehensive virtual factory model was developed for a 
wood manufacturing company. This tool enables the creation 

of a digital twin that replicates the physical production en ­
vironment, allowing for a detailed analysis and testing of 
workflows without interfering with actual operations. The 
virtual factory model integrates essential production pro ­
cesses, including CNC machining, assembly, material han ­
dling, and finishing workflows. Key inputs, such as machine 
specifications, cycle times, and production targets, were pro ­
vided by the company and integrated into the model to 
accurately replicate real­world conditions. Through this vir ­
tual representation, various production scenarios were simu ­
lated to predict potential inefficiencies, identify bottlenecks, 
and assess the impact of proposed changes on system per ­
formance. For instance, layout adjustments and transport flow 
optimization scenarios were tested to improve throughput and 
reduce idle time. Such applications of virtual factories enable 
manufacturers to experiment with process designs, resource 
allocations, and operational strategies without the risks and 
costs of physical trials. The effectiveness of virtual factories 
in manufacturing optimization has been extensively demon ­
strated in recent studies. Digital twin systems have been 
shown to enhance production efficiency by enabling real­time 
monitoring and predictive analytics, leading to significant 
reductions in downtime and improved resource utilization [8]. 
Additionally, virtual factory models have proven effective in 
streamlining workflows and optimizing resource allocation, 
resulting in lower operational costs and higher through put [9]. 

Figure 2 presents the virtual factory model created for the 
wood manufacturing company using the STPS software. The 
layout depicts the production flow, encompassing CNC ma ­
chin ing, assembly, material handling, and finishing work ­
flows. Accompanying the model is a “Resource Statistics” 
chart, which provides insights into key performance indi ­
cators (KPI) such as resource utilization, working times, idle 
times, and bottlenecks across various stations. This virtual 
factory model facilitated the simulation of production sce ­
narios, including layout optimization and transport flow im ­
provements, identifying inefficiencies, and the development 
of actionable strategies to enhance overall throughput and 
reduce idle time. 

 
Fig. 1.  Proposed framework for production process optimization. 
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Real-time data collection for enhanced accuracy 
Real­time data collection, enabled by manufacturing ex ­
ecution systems (MES), provides critical metrics such as 
machine availability, cycle times, resource utilization, and 
defect rates. These metrics are integrated into the virtual fac ­
tory model to ensure that it remains an accurate and dynamic 
representation of the physical production environment. Con ­
tinuous monitoring supports effective simulations and data­
driven workflow optimization [10]. MES with real­time data 
collection capabilities ensure operational trans parency, en ­
abling real­time adjustments to workflows and enhancing 
production efficiency. Integration with digital twin tech ­
nology has been shown to improve OEE through en hanced 
scheduling accuracy and predictive maintenance [11]. This 
capability is essential in dynamic manufacturing en viron ­
ments, where agility and responsiveness are critical for adapt ­
ing to fluctuating production demands. The DIMUSA MES  
interface, as shown in Fig. 3, visualizes critical pro duc tion 
metrics for specific machines, such as a crosscut saw and a 
four­sided planer. These dashboards display KPIs [12,13], 
including availability, performance, quality, and OEE. The 
system tracks real­time working hours, short stops, long stops, 
and off times, providing a clear overview of machine per ­
formance and utilization. 

This visualization enables factory operators to monitor 
production in real­time, identify inefficiencies, and make im ­
mediate adjustments to workflows. By integrating this data 
into the virtual factory model, decision­makers can enhance 
process accuracy and efficiency. Real­time data collection 
aligns with Industry 4.0 principles, facilitating automation, 
connectivity, and the use of advanced analytics. These sys ­
tems enable factories to transition seamlessly between pro ­

duction scenarios, reducing downtime and improving re ­
source allocation. 

 
AI-based analysis for data-driven optimization 
AI plays a pivotal role in the proposed methodology by 
analyzing the collected data and generating actionable in ­
sights. By leveraging AI­driven clustering techniques, pro ­
duction inefficiencies can be identified more effectively, 
allowing manufacturers to address systemic bottlenecks be ­
fore they escalate into major disruptions. This study applied 
clustering methods to OEE metrics to identify patterns and 
segment production data into meaningful groups. K­means 
clustering (k = 5, determined using the elbow method) was 
se lected as the primary approach due to its efficiency in han ­
d ling large industrial datasets and its ability to create clearly 
defined clusters based on similarity measures. K­means clus ­
tering was chosen over other machine learning approaches, 
such as hierarchical clustering or Gaussian mix ture models, 
due to its efficiency, scalability, and adaptability to manu ­
facturing environments. The time complexities of the k­means 
clustering, hierarchical clustering and Gaussian mix ture 
models are given in Table 1 [14]. 

It can be observed from Table 1 that in the case of large 
dataset capacity, the time complexity of the k­means cluster ­
ing is substantially lower than that of hierarchical clustering. 
The Gaussian mixture models complexity is higher due to 
covariance computations. Unlike deep learning methods, 
k­means provides interpretable cluster assignments, enabling 
engineers to quickly identify underperforming machines or 
processes. Since OEE metrics fluctuate based on production 
schedules, k­means effectively groups machines by perform ­
ance trends, making it easier to track changes over time and 

 
Fig. 2.  Virtual factory model developed using STPS. 



implement data­driven optimizations. The proposed approach 
enables a deeper understanding of the factors affecting avail ­
ability, performance, and quality within the manufacturing 
process. By applying clustering algorithms to OEE metrics, 
specific production bottlenecks and inefficiencies were iden ­
tified. These insights were used to optimize resource allo ­
cation, balance workflows across the production line, and 
implement targeted predictive maintenance strategies, reduc ­
ing downtime and improving overall system performance. 
The clustering­based analysis has proven effective in manu ­
facturing, offering precise optimization strategies that en ­
hance production efficiency and resource utilization [15]. 
By incorporating these methods, this approach ensures a pro ­
active and data­driven framework for optimizing manufactur ­
ing operations. 

Figure 4 presents the results of the clustering analysis 
applied to the OEE metrics, visualized as a scatter plot. The 
x­axis represents availability (%), while the y­axis represents 
performance (%). Each point in the plot represents an indi ­
vidual workstation, and different colors indicate the cluster 
to which each workstation belongs based on its operational 
characteristics. The clustering analysis effectively groups 
work stations according to their efficiency levels, revealing 
patterns across the production environment. Workstations 
located in the lower­left quadrant exhibit both low availability 
and low performance, identifying them as critical bottlenecks 

that require intervention. In contrast, workstations in the 
upper­right quadrant maintain high availability and high per ­
formance, serving as benchmarks for optimal efficiency. This 
visualization provides a clear overview of production imbal ­
ances, helping manufacturers pinpoint underperforming work ­
stations and analyze the causes of their underperformance. 
Workstations within the lowest­performing clusters often 
suffer from fre quent down time, suboptimal scheduling, or in ­
efficient re source utilization. By leveraging these insights, 
targeted ac tions such as re distributing workloads, adjusting 
production schedules, or implementing predictive mainte ­
nance strategies can be taken to enhance efficiency. The abil ­
ity to visually segment work stations based on OEE data en ­
sures that pro duction opti mizations are data­driven rather 
than reactive. This approach allows for proactive decision­
making, leading to more bal anced workloads, minimized 
downtime, and improved over all production performance. 
 
A scalable and cost-efficient framework 
The key advantages of the proposed methodology are its scal ­
ability and cost efficiency. Unlike traditional trial­and­error 
approaches, which require significant time and re sources, this 
integrated framework minimizes risks and pro vides im me ­
diate feedback on the feasibility of proposed changes. It is 
particularly well suited for dynamic manufactur ing environ ­
ments, where adaptability and responsiveness are crucial. 
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Fig. 3.  DIMUSA system interface for real-time data collection. 

Time complexity K-means clustering Hierarchical clustering Gaussian mixture models 
 ��� � � � �� ����
��
���� 	 ��������� ��� � � � �� 
Meaning of 
parameters 

� * number of data points,  
k � number of clusters,          
d � number of dimensions 

� * number of data points � * number of data points,  
k � number of Gaussian components, 
d � number of dimensions 

Table 1. Comparison of time complexities 
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By combining the predictive power of virtual factory models, 
the accuracy of real­time data collection, and the analytical 
depth of AI­based techniques, this methodology enables 
manufacturers to achieve continuous improvement and 
maintain a competitive edge in their industries. 

Conclusion 
The proposed approach presents a comprehensive framework 
for identifying inefficiencies and optimizing workflows in the 
wood manufacturing company. By combining advanced si ­
mu lation tools, real­time monitoring systems, and AI­driven 
analysis, this methodology enables a deeper understanding of 
production processes and their performance. Simulation tools 
allow manufacturers to create a digital twin of the production 
environment, where different scenarios can be tested without 
disrupting actual operations. Real­time monitoring systems 
continuously collect production data, tracking machine avail ­
ability, performance metrics, and potential bottlenecks. The AI­
driven analysis processes this data, detecting patterns and 
inefficiencies that may not be immediately visible through 
traditional monitoring methods. By integrating these compo ­
nents, the proposed framework not only identifies operational 
weaknesses but also provides data­driven recommendations 
for improvements. This enables proactive decision­making, 
allowing managers to anticipate and address production chal ­
lenges before they escalate. The result is a more efficient, re ­
silient, and optimized manufacturing process, where resources 
are utilized effectively, workflows are balanced, and pro ­
ductivity is maximized. 
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Virtuaaltehase mudeli arendamine tehisintellektil põhinevaks tootmise 
optimeerimiseks 

Tõnis Raamets, Kristo Karjust, Aigar Hermaste ja Karolin Kelpman 

Uuringus käsitletakse tehisintellektil põhineva analüüsi rakendamist virtuaaltehase mudeli arendamisel ees-
märgiga optimeerida tootmisseadmete üldist tõhusust puidutööstusettevõttes. Uuringus kasutati Siemens 
Plant Simulationi tarkvara, et luua digitaalne kaksik, mis võimaldab tootmisvoogude simulatsiooni ja analüüsi. 
Lisaks koguti reaalajas andmeid tootmisjuhtimissüsteemi abil, et mudelit täpsustada ja pakkuda dünaamilist 
ülevaadet tootmisprotsessidest. Kogutud andmete analüüsimiseks rakendati klastrianalüüsi, mis võimaldas 
tuvastada kitsaskohti ja ressursikasutuse ebatõhusust. Simulatsioonide ja andmepõhiste soovituste põhjal 
optimeeriti tööjaamade paigutust ja ressursijaotust, mis parandas tootmisvoogude tasakaalu ja vähendas 
kitsaskohtade esinemist. Tulemused näitavad, et virtuaaltehase mudelite ja tehisintellekti integreerimine aitab 
tõsta tootmisvoogude tõhusust, vähendada seisakuid ja suurendada investeeringute planeerimise täpsust. 
Pakutud lähenemine toetab tänapäevase puidutööstuse vajadust paindlike, skaleeritavate ja kulutõhusate 
lahenduste järele, järgides Industry 5.0 põhimõtteid. 
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