ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Overview of the development of cybersecurity in data transmission protocols used in industry; pp. 143–148
PDF | https://doi.org/10.3176/proc.2025.2.11

Authors
Sergei Ponomar, Martinš Sarkans
Abstract

The fourth industrial revolution (Industry 4.0) has enabled the digitalization of almost all technological processes. While industrial robots and systems communicate with each other mainly through data transfer protocols, humans at the same time primarily play the role of process observers. Initially, the development of data transfer protocols focused primarily on speed and data quality, with minimal attention paid to cybersecurity. As more and more industrial devices share data with each other, it has become essential to ensure cybersecurity during communication. This article briefly discusses the security of data exchange protocols from this perspective. In recent decades, cyberattacks against industrial facilities have been increasing, prompting the incorporation of various security methods into communication protocols. This article provides a review of studies conducted in recent years on how cybersecurity has evolved in industrial data transmission protocols and its impact on technological processes. Additionally, the article explores how cybersecurity will influence the transition to the fifth industrial revolution (Industry 5.0). The outcome of this research will highlight how the addition of protective mechanisms to the data transmission protocols affects their functionality and quality. It will also examine the challenges that arise during the integration of security features into the data transmission protocols.

References

1. Jiang, Y., Jeusfeld, M. A., Mosaad, M. and Oo, N. Enterprise architecture modeling for cybersecurity analysis in critical infrastructures – a systematic literature review. Int. J Crit. Infrastruct. Prot., 2024, 46, 100700. 
https://doi.org/10.1016/J.IJCIP.2024.100700  

2. Asghar, M. R., Hu, Q. and Zeadally, S. Cybersecurity in industrial control systems: issues, technologies, and challenges. Comput. Networks, 2019, 165, 106946. 
https://doi.org/10.1016/j.comnet.2019.106946  

3. Gordon-Box, M. The 5 layers of the automation pyramid and manufacturing operations management. 
https://www.syspro.com/blog/erp-for-manufacturing/the-5-layers-of-the-automation-pyramid-and-manufacturing-operations-management/ (accessed 2025-01-03).

4. Tunkkari, J. Mapping Modbus to OPC Unified Architecture. Master’s thesis. Aalto University, Espoo, 2018.

5. Profanter, S., Tekat, A., Dorofeev, K., Rickert, M. and Knoll, A. OPC UA versus ROS, DDS, and MQTT: performance evaluation of Industry 4.0 protocols. In 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019. IEEE, 2019, 955–962. 
https://doi.org/10.1109/ICIT.2019.8755050  

6. Hemsley, K. and Fisher, R. A history of cyber incidents and threats involving industrial control systems. In Critical Infra­structure Protection XII (Staggs, J. and Shenoi, S., eds). IFIP Advances in Information and Communication Technology542. Springer, Cham, 2018. 
https://doi.org/10.1007/978-3-030-04537-1_12  

7. Leander, B., Čaušević, A. and Hansson, H. Applicability of the IEC 62443 standard in Industry 4.0 / IIoT. In ARES ‘19: Proceedings of the 14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019. ACM, New York, USA, 2019. 
https://doi.org/10.1145/3339252.3341481  

8. Hillar, G. C. MQTT Essentials - A Lightweight IoT Protocol. Packt Publishing, Birmingham, 2017. 

9. Buchanan, W. Computer Busses. Butterworth-Heinemann, 2000. 
https://doi.org/10.1201/9781420041682  

10. Lehnhoff, S., Rohjans, S., Uslar, M. and Mahnke, W. OPC unified architecture: a service-oriented architecture for smart grids. In 2012 First International Workshop on Software Engineering Challenges for the Smart Grid (SE-SmartGrids), Zurich, Switzerland, 3 June 2012. IEEE, 2012, 1–7. 
https://doi.org/10.1109/SE4SG.2012.6225723   

11. Alsabbagh, W. and Langendörfer, P. You are what you attack: breaking the cryptographically protected S7 protocol. In 2023 IEEE 19th International Conference on Factory Communication Systems (WFCS), Pavia, Italy, 26–28 April 2023. IEEE, 2023, 1–8. 
https://doi.org/10.1109/WFCS57264.2023.10144251   

12. Kjellsson, J., Vallestad, A. E., Steigmann, R. and Dzung, D. Integration of a wireless I/O interface for PROFIBUS and PROFINET for factory automation. IEEE Trans. Ind. Electron., 2009, 56(10), 4279–4287. 
https://doi.org/10.1109/TIE.2009.2017098  

13. Martins, T. and Oliveira, S. V. G. Enhanced Modbus/TCP security protocol: authentication and authorization functions supported. Sensors, 2022, 22(20), 8024. 
https://doi.org/10.3390/s22208024  

14. Vandervelden, T., De Smet, R., Steenhaut, K. and Braeken, A. SHA3 and Keccak variants computation speeds on constrained devices. Future Gener. Comput. Syst., 2022, 128, 28–35.
https://doi.org/10.1016/j.future.2021.09.042  

15. MQTT Version 5.0. 
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed 2025-01-03).

16. Hui, H., McLaughlin, K. and Sezer, S. Vulnerability analysis of S7 PLCs: manipulating the security mechanism. Int. J. Crit. Infrastruct. Prot., 2021, 35, 100470. 
https://doi.org/10.1016/j.ijcip.2021.100470  

17. Di Paolo, E., Bassetti, E. and Spognardi, A. Security assessment of common open source MQTT brokers and clients. CEUR Workshop Proc., 2021, 2940, 1–13. 

Back to Issue