ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Green’s relations for 2 × 2 matrices over linearly ordered abelian groups; pp. 62–70
PDF | https://doi.org/10.3176/proc.2025.1.06

Authors
Marilyn Kutti, Valdis Laan
Abstract

We consider semigroups of 2 × 2 matrices over linearly ordered abelian groups with respect to multiplication, which is defined similarly to tropical algebra. We study Green’s relations on such semigroups. In particular, we describe the R-, L- and H-classes of such semigroups and give a simple criterion for determining whether two matrices are D-related. We prove that the D-relation coincides with the J-relation. We also study maximal subgroups of such semigroups. It turns out that if the abelian group is divisible, then these maximal subgroups can have two different forms.

References

1. Beasley, L. B. and Guterman, A. Rank inequalities over semirings. J. Korean Math. Soc., 2005, 42, 223–241.
https://doi.org/10.4134/JKMS.2005.42.2.223

2. Fuchs, L. Partially Ordered Algebraic Systems. Pergamon Press, Oxford, New York, 1963.

3. Gould, V., Johnson, M. and Naz, M. Matrix semigroups over semirings. Internat. J. Algebra Comput., 2020, 30, 267–337.
https://doi.org/10.1142/S0218196720500010

4. Guterman, A., Johnson, M. and Kambites, M. Linear isomorphisms preserving Green’s relations for matrices over antinegative semifields. Linear Algebra Appl., 2018, 545, 1–14.
https://doi.org/10.1016/j.laa.2018.01.023

5. Hampton, G. F. Green’s relations and dimension in abstract semigroups. PhD thesis. University of Tennessee, USA, 1964.

6. Hollings, C. and Kambites, M. Tropical matrix duality and Green’s D relation. J. London Math. Soc., 2012, 86(2), 520–538.
https://doi.org/10.1112/jlms/jds015

7. Howie, J. M. Fundamentals of Semigroup Theory. Oxford University Press, 1995.
https://doi.org/10.1093/oso/9780198511946.001.0001

8. Izhakian, Z., Johnson, M. and Kambites, M. Tropical matrix groups. Semigroup Forum, 2018, 96, 178–196.
https://doi.org/10.1007/s00233-017-9894-1

9. Johnson, M. and Kambites, M. Multiplicative structure of 2 × 2 tropical matrices. Linear Algebra Appl., 2011, 435(7), 1612–1625.
https://doi.org/10.1016/j.laa.2009.12.030

10. Johnson, M. and Kambites, M. Green’s J-order and the rank of tropical matrices. J. Pure Appl. Algebra, 2013, 217(2), 280–292.
https://doi.org/10.1016/j.jpaa.2012.06.003

11. Kutti, M. and Laan, V. Idempotent 2 × 2 matrices over linearly ordered abelian groups. Categories Gen. Algebraic Struct. Appl., 2024, 21, 1–17.

12. Laan, V. and Márki, L. Strong Morita equivalence of semigroups with local units. J. Pure Appl. Algebra, 2011, 215(10), 2538–2546.
https://doi.org/10.1016/j.jpaa.2011.02.017

13. Wilding, D. Linear algebra over semirings. PhD thesis. University of Manchester, UK, 2014.

14. Wilding, D., Johnson, M. and Kambites, M. Exact rings and semirings. J. Algebra, 2013, 388, 324–337.
https://doi.org/10.1016/j.jalgebra.2013.05.005

15. Yang, L. Regular D-classes of the semigroup of n × tropical matrices. Turkish J. Math., 2018, 42, 2061–2070.
https://doi.org/10.3906/mat-1803-80

16. Yang, L. The tropical matrix groups with symmetric idempotents. Discrete Dyn. Nat. Soc., 2018, 2018, 4797638.
https://doi.org/10.1155/2018/4797638

Back to Issue