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ABSTRACT

We consider semigroups of 2 × 2 matrices over linearly ordered abelian groups with respect

to multiplication, which is defined similarly to tropical algebra. We study Green’s relations on

such semigroups. In particular, we describe the R-, L- and H-classes of such semigroups
and give a simple criterion for determining whether two matrices are D-related. We prove
that the D-relation coincides with the J-relation. We also study maximal subgroups of such
semigroups. It turns out that if the abelian group is divisible, then these maximal subgroups

can have two different forms.

1. Introduction

In this paper, we study the properties of multiplicative semigroups of 2 × 2
matrices over linearly ordered abelian groups, where the multiplication is
defined using the so-called tropical operations. Throughout the text, A =

(�, +, ≤) will denote a linearly ordered abelian group (see [2]). Then 0 ∨
1 = max{0, 1} for every 0, 1 ∈ �. We note that (A,∨, +) is a commutative
semiring, where ∨ is the addition operation and + plays the role of semiring
multiplication. It has the multiplicative identity element 0, but it lacks the zero
element (i.e. the additive neutral element). However, this semiring has local
zeros (see [6]) in the sense that, for every finite subset � ⊆ �, there exists an
element I ∈ � such that 1 ∨ I = 1 for all 1 ∈ �. Indeed, since the order is
linear, we may take I as the smallest element of �.

We will consider matrices over A. Denoting the (8, 9)th entry of a matrix
- ∈ "<,= (�) by -8 9 , the tropical product - ⊗ . ∈ "<,? (A) of - ∈
"<,= (�) and . ∈ "=,? (�) is defined by

(- ⊗ . )8 9 := (-81 + .1 9) ∨ . . . ∨ (-8= + .= 9).

We will often write just -. instead of - ⊗ . . The tropical sum - ⊕ . of
-,. ∈ "<,= (A) is defined by (- ⊕ . )8 9 := -8 9 ∨ .8 9 . The product of a
matrix - ∈ "<,= (A) and a sclalar 0 ∈ � is defined by (0 · -)8 9 := 0 + -8 9 .
With these operations, ("= (A), ⊕, ⊗) is a semiring, and "<,= (A) is a left
semimodule over the semiring A. In particular, ("= (A), ⊗) is a semigroup,
and our purpose in this paper is to study the properties of this semigroup for
= = 2.

An important special case is the linearly ordered abelian group (R, +, ≤).
Matrices over it are called finitary tropical matrices (cf. [10]). If a matrix
is allowed to have −∞ as an entry, then one speaks about tropical matrices,
and the study of such matrices belongs to the field called tropical algebra.
Investigations in this field are motivated by numerous applications.

In [9], Marianne Johnson and Mark Kambites initiated a systematic study
of the multiplicative semigroup of tropical matrices of order 2. Among other
things, they described Green’s relations in that semigroup. These relations R,
L, H , D and J are fundamental tools in semigroup theory. By now, several
articles have been published dealing with Green’s relations for tropical matrix
semigroups: [4,6,10,15].
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The aim of this paper is to contribute to that study but in a more general setting. We consider
the multiplicative semigroup "2(A) of 2 × 2 matrices over a linearly ordered abelian group A.
We show what the R-, L- and H -classes are (Proposition 2.3, Proposition 2.6, Proposition 2.9),
we describe H -classes that contain an idempotent (Proposition 5.3), and we give a necessary and
sufficient condition for two matrices to be in the same D-class (Theorem 3.2). We prove that the
relations D and J coincide in the semigroup "2(A) (Theorem 4.5). It turns out that the subset of
balanced matrices is an ideal in the semigroup "2(A), which, as a semigroup, is completely simple
(Theorem 3.5).

Let us briefly recall the definitions of Green’s relations (see e.g. [7]). If ( is a semigroup, then
(1 denotes the monoid obtained from ( by adjoining an external identity 1. For every 0, 1 ∈ (,
0R1 iff 0(1 = 1(1, 0L1 iff (10 = (11 and 0J1 iff (10(1 = (11(1. In addition, H = R ∩ L and
D = R ◦ L.

2. R-, L- andH-classes

First, we consider the R-classes and L-classes of the semigroup "2(A). In [9, Section 3], Johnson
and Kambites showed (using methods of tropical geometry) that R-classes of the multiplicative
semigroup of 2 × 2 matrices over the tropical semiring R ∪ {−∞} have eight different forms. We do
not consider the externally added element −∞, which makes the situation somewhat simpler.

For a matrix - =

(
0 1

2 3

)
∈ "2(A), the column space of - is defined as

� (-) =
{(
(_ + 0) ∨ (` + 1)
(_ + 2) ∨ (` + 3)

)
| _, ` ∈ �

}
=: span{(0, 2)) , (1, 3)) }.

It is the subsemimodule of "2,1(A) generated by the column vectors of - . Dually, the row space
'(-) = span{(0, 1), (2, 3)} is defined. The following important result is a corollary of [6, Propos-
ition 4.1] (an even more general version of this result appears in [13, Proposition 6.6]).

Proposition 2.1. Let A be a linearly ordered abelian group and -,. ∈ "2(A). Then - R . if and
only if � (-) = � (. ).

To prove the next proposition, we will use the following result.

Lemma 2.2. Let A be a linearly ordered abelian group, G, I, F ∈ � and I ≤ F. Then

(0, G)) ∈ span{(0, I)) , (0, F)) } ⇐⇒ I ≤ G ≤ F.

Proof. ( =⇒ ) If (0, G)) ∈ span{(0, I)) , (0, F)) }, then there exist _, ` ∈ � such that

0 = _ ∨ ` and G = (_ + I) ∨ (` + F).

In particular, _, ` ≤ 0, so G = (_ + I) ∨ (` + F) ≤ I ∨ F = F. If _ = 0, then G = I ∨ (` + F). Thus,
G ≥ I. If ` = 0, then G = (_ + I) ∨ F. Hence, G ≥ F, and we have G = F ≥ I. We have shown that
I ≤ G ≤ F.

( ⇐= ) If I ≤ G ≤ F, then(
0
G

)
=

(
(0 + 0) ∨ (G − F + 0)
(0 + I) ∨ (G − F + F)

)
∈ span

{(
0
I

)
,

(
0
F

)}
.

�

Proposition 2.3. Let A be a linearly ordered abelian group. For every R-class ' of the semigroup
"2(A) there exist uniquely determined I, F ∈ � such that I ≤ F and

' = {- ∈ "2(A) | � (-) = span{(0, I)) , (0, F)) }} =: 'IF .

Proof. Let ' be the R-class of a matrix - =

(
0 1

2 3

)
∈ "2(A). Since

� (-) = span{(0, 2)) , (1, 3)) } = span{(0, 2 − 0)) , (0, 3 − 1)) },
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we have either ' = '2−0,3−1 or ' = '3−1,2−0, depending on whether 2−0 ≤ 3−1 or 3−1 ≤ 2−0.
Suppose there is another pair of elements G, H ∈ � such that G ≤ H and ' = 'GH . Then Lemma 2.2

yields
I ≤ G ≤ H ≤ F and G ≤ I ≤ F ≤ H.

Hence, G = I and H = F. �

Corollary 2.4. Let A be a linearly ordered abelian group, I, F ∈ � and I ≤ F. Then 'IF =

'1
IF ∪ '2

IF , where

'1
IF =

{(
0 1

0 + I 1 + F

) ��� 0, 1 ∈ �

}
and '2

IF =

{(
1 0

1 + F 0 + I

) ��� 0, 1 ∈ �

}
.

Proof. Suppose that - =

(
0 1

2 3

)
∈ 'IF and denote G := 2−0, H := 3−1. We have two possibilities.

1) G ≤ H. Then

� (-) = span{(0, 2)) , (1, 3)) } = span{(0, G)) , (0, H)) }.

By Proposition 2.3, - ∈ 'GH . Due to uniqueness, G = I and H = F. Therefore, 2 = 0 + I, 3 = 1 + F

and - =

(
0 1

0 + I 1 + F

)
∈ '1

IF .

2) H ≤ G. A similar argument shows that - =

(
0 1

0 + F 1 + I

)
∈ '2

IF .

Conversely, if - ∈ '1
IF ∪ '2

IF , then

� (-) = span{(0, 0 + I)) , (1, 1 + F)) } = span{(0, I)) , (0, F)) }.

So, - ∈ 'IF . �

Corollary 2.5. Let A be a linearly ordered abelian group. In the semigroup "2(A),(
0 1

2 3

)
R
(
G H

I F

)
⇐⇒ {0 − 2, 1 − 3} = {G − I, H − F}.

Dual arguments will give the following results.

Proposition 2.6. Let A be a linearly ordered abelian group. For every L-class ! of the semigroup
"2(A) there exist uniquely determined D, E ∈ � such that D ≤ E and

! = {- ∈ "2(A) | '(-) = span{(0, D), (0, E)}} =: !DE .

Corollary 2.7. Let A be a linearly ordered abelian group, D, E ∈ � and D ≤ E. Then !DE = !1
DE∪!2

DE ,
where

!1
DE =

{(
0 0 + D

1 1 + E

) ��� 0, 1 ∈ �

}
and !2

DE =

{(
1 1 + E

0 0 + D

) ��� 0, 1 ∈ �

}
.

Corollary 2.8. Let A be a linearly ordered abelian group. In the semigroup "2(A),(
0 1

2 3

)
L

(
G H

I F

)
⇐⇒ {0 − 1, 2 − 3} = {G − H, I − F}.

The H -classes of a semigroup are precisely those intersections of L-classes and R-classes that
are nonempty. Knowing the L-classes and R-classes allows us to describe the H -classes in "2(A).

Proposition 2.9. Let A be a linearly ordered abelian group. The H -classes of the semigroup "2(A)
have the form !DE ∩ 'IF , satisfying D ≤ E, I ≤ F and D + F = E + I. These intersections can be
described explicitly as

!DE ∩ 'IF = (!1
DE ∩ '1

IF) ∪ (!2
DE ∩ '2

IF), (2.1)

!1
DE ∩ '1

IF =

{(
0 0 + D

0 + I 0 + E + I

) ��� 0 ∈ �

}
, (2.2)

!2
DE ∩ '2

IF =

{(
0 0 + E

0 + F 0 + D + F

) ��� 0 ∈ �

}
. (2.3)
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Proof. Consider an L-class !DE, D ≤ E, and an R-class 'IF , I ≤ F. First, we prove that the
intersection !DE ∩ 'IF is nonempty if and only if D + F = E + I. If D + F = I + E, then D + F − I = E

and
(
0 D

I D + F

)
∈ !DE ∩ 'IF by Corollary 2.5 and Corollary 2.8. Thus, !DE ∩ 'IF ≠ ∅.

Conversely, assume that there exists a matrix
(
0 1

2 3

)
∈ !DE∩'IF = (!1

DE∪!2
DE) ∩ ('1

IF∪'2
IF).

We have four possibilities.

1)
(
0 1

2 3

)
∈ !1

DE ∩ '1
IF . Then 1 − 0 = D, 3 − 2 = E, 2 − 0 = I and 3 − 1 = F. Hence,

D + F = 3 − 0 = I + E.

2)
(
0 1

2 3

)
∈ !2

DE ∩ '2
IF . Similar to case 1).

3)
(
0 1

2 3

)
∈ !1

DE ∩ '2
IF . Then 1 − 0 = D, 3 − 2 = E, 2 − 0 = F and 3 − 1 = I. Now,

D + I = 3 − 0 = E + F. Since D ≤ E and I ≤ F, this implies D = E and I = F. Hence, D + F = E + I.

4)
(
0 1

2 3

)
∈ !2

DE ∩ '1
IF . Similar to case 3).

Finally, we prove the equalities between sets. Assume that D ≤ E, I ≤ F and D + F = E + I. Then

either D = E, I = F or D < E, I < F.

In the first case, !1
DE = !2

DE = !DE, '1
IF = '2

IF = 'IF , and the equality (2.1) holds.

Consider the case D < E and I < F. If
(
0 1

2 3

)
∈ !1

DE ∩ '2
IF , then, as in 3), 2 + E = 3, 0 + D = 1

and 0 + 3 = 1 + 2. Hence, 0 + 2 + E = 0 + 3 = 1 + 2 = 0 + D + 2, which implies E = D, a contradiction.
Thus, !1

DE ∩ '2
IF = ∅. A similar argument shows that !2

DE ∩ '1
IF = ∅. Hence, again, the equality

(2.1) holds.
Let us prove the equality (2.2) (the proof of (2.3) is similar). The inclusion ⊇ follows from the

fact that 0 + E + I − 0 − D = I + E − D = F. For the inclusion ⊆ we take a matrix - =

(
0 1

2 3

)
∈

!1
DE ∩ '1

IF . Then 1 − 0 = D, 3 − 2 = E, 2 − 0 = I and 3 − 1 = F. Hence, 1 = 0 + D, 2 = 0 + I,

3 = 1 + F = (0 + D) + (E + I − D) = 0 + E + I and - =

(
0 0 + D

0 + I 0 + E + I

)
. �

3.D-classes
Recall that D = L ◦ R = R ◦ L. To every 2 × 2 matrix we will associate a certain element of �.

Definition 3.1. We call the element 0+3−1−2 ∈ � the deviation of a matrix - =

(
0 1

2 3

)
∈ "2(A)

and denote it by dev(-). We say that - is balanced (see [11]) if dev(-) = 0, i.e. 0 + 3 = 1 + 2.

It is easy to check that dev(-) = 0 if and only if the column space (equivalently, the row space)
of - is 1-generated. Such matrices are often referred to as matrices of rank 1.

In [6, Theorem 5.5], it is proved that two =× = tropical matrices are D-related if and only if their
row spaces (or column spaces) are isomorphic as semimodules. This result is further generalized in
[14, Theorem 7.1] for matrices over exact semirings. We will show that in our setting it suffices to
compare the deviations of the matrices.

Theorem 3.2. Let A be a linearly ordered abelian group and -,. ∈ "2(A). Then

- D . ⇐⇒ dev(-) = dev(. ) or dev(-) = − dev(. ).

Proof. ( =⇒ ) From Corollary 2.4 we see that if - R . , then dev(-) = ± dev(. ). By Corollary 2.7,
- L. implies dev(-) = ± dev(. ). Hence, - D . implies dev(-) = ± dev(. ).

( ⇐= ) Suppose that we have dev(-) = ± dev(. ). Let - ∈ 'IF and . ∈ !DE , where I ≤ F and
D ≤ E. Then

F − I = dev
(
0 0
I F

)
= ± dev(-) = ± dev(. ) = dev

(
0 D

0 E

)
= E − D.
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Since F − I, E − D ≥ 0, we have F − I = E − D or, equivalently, F + D = I + E. Now,

- R
(
0 0
I F

)
R

(
0 D

I I + E

)
L

(
0 D

0 E

)
L .,

yielding - (R ◦ L). . �

Corollary 3.3. Let A be a linearly ordered abelian group. For every - ∈ "2(A), -D-) .

Recall that if A is an ordered abelian group, then the set �+ = {0 ∈ � | 0 ≥ 0} is called the
positive cone of A [2]. For 0 ∈ �, |0 | will denote the absolute value of 0, i.e. |0 | = 0 if 0 ≥ 0 and
|0 | = −0 if 0 < 0.

Proposition 3.4. Let A be a linearly ordered abelian group. The set of all D-classes of the semigroup
"2(A) is in one-to-one correspondence with the positive cone of A.

Proof. Consider the mappings

5 : "2(A)/D → �+, [-]D ↦→ | dev(-) |,

6 : �+ → "2(A)/D, 0 ↦→
[(
0 0
0 0

)]
D
.

Note that 5 is well defined due to Theorem 3.2. Clearly, 5 6 = 83�+ . To prove that 6 5 is the identity
mapping, observe that, for every - ∈ "2(A),

(6 5 )
(
[-]D

)
= 6( | dev(-) |) =

[(
| dev(-) | 0

0 0

)]
D
=

[(
dev(-) 0

0 0

)]
D
= [-]D .

�

Thus, "2(A)/D = {�0 | 0 ∈ �+}, where

�0 = {- ∈ "2(A) | | dev(-) | = 0}.

In particular, �0 is the set of all balanced matrices. If � =

(
0 1

2 3

)
is a balanced matrix,

then � =
(
0 2

)) ⊗
(
0 1 − 0

)
. Conversely, if D =

(
D1 D2

)
, E =

(
E1 E2

)
∈ "1,2(A), then

D) ⊗ E =

(
D1 + E1 D1 + E2
D2 + E1 D2 + E2

)
is balanced. Hence, �0 = {D) ⊗ E | D, E ∈ "1,2(A)}. More generally,

for any natural number = ≥ 2, we can consider the set

�= (A) = {D) ⊗ E | D, E ∈ "1,= (A)} ⊆ "= (A).

Recall that completely simple semigroups are precisely those that are isomorphic to Rees matrix
semigroups over groups [7, Theorem 3.3.1].

Theorem 3.5. If A is a linearly ordered abelian group, then �= (A) is an ideal of the semigroup
"= (A). The semigroup �= (A) is completely simple.

Proof. If D) ⊗ E ∈ �= (A) and - ∈ "= (A), then

(D) ⊗ E) ⊗ - = D) ⊗ (E ⊗ -) ∈ �= (A) and - ⊗ (D) ⊗ E) = (- ⊗ D) ) ⊗ E ∈ �= (�)

because E ⊗ - ∈ "1,= (A) and - ⊗ D) ∈ "=,1(A). Thus, �= (A) is an ideal.
We will prove that the semigroup �= (A) is isomorphic to a Rees matrix semigroup over

the abelian group (�, +). Consider the Rees matrix semigroup M = M(A, �, �, ?), where � =

"1,=−1(A), and the sandwich matrix ? : � × � → � is defined by

?(8, 9) := 0 ∨ 0, where 8 ⊗ 9) = (0) ∈ "1(A).
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For every D =
(
D1 D2 . . . D=

)
∈ "1,= (A) we denote 8D :=

(
D2 − D1 . . . D= − D1

)
∈ �. We

define a mapping i : �= (A) → M by

i

(
D) ⊗ E

)
:= (8D, D1 + E1, 8E).

Take any D, E, F, I ∈ "1,= (A) and let E ⊗ F) = (0) ∈ "1(A). Then

i

(
(D) ⊗ E) ⊗ (F) ⊗ I)

)
= i

(
D) ⊗ (E ⊗ F) ) ⊗ I

)
= i

(
D) ⊗ (0 · I)

)
= i

(
D) ⊗

(
0 + I1 . . . 0 + I=

) )
= (8D, D1 + 0 + I1, 8I)

= (8D, D1 + I1 + ((E1 + F1) ∨ (E2 + F2) ∨ . . . ∨ (E= + F=)), 8I)
= (8D, D1 + E1 + F1 + I1 + (0 ∨ (E2 − E1 + F2 − F1) ∨ . . . ∨ (E= − E1 + F= − F1)), 8I)
=
(
8D, D1 + E1,

(
E2 − E1 . . . E= − E1

) ) ( (
F2 − F1 . . . F= − F1

)
, F1 + I1, 8I

)
= i

(
D) ⊗ E

)
i

(
F) ⊗ I

)
.

So, i is a semigroup homomorphism. If
( (
82 . . . 8=

)
, 0,

(
92 . . . 9=

) )
is any element in M, then

i

( (
0 82 + 0 . . . 8= + 0

)) ⊗
(
0 92 . . . 9=

) )
=
( (
82 . . . 8=

)
, 0,

(
92 . . . 9=

) )
,

proving that i is surjective.
To show that i is injective, suppose that i

(
D) ⊗ E

)
= i

(
F) ⊗ I

)
, where D, E, F, I ∈ "1,= (A).

Then (−D1) · D = (−F1) · F, (−E1) · E = (−I1) · I and D1 + E1 = F1 + I1. Hence,

D) ⊗ E = (D1 · (−D1) · D)) ⊗ (E1 · (−E1) · E)
= D1 · ((−D1) · D)) ⊗ E1 · ((−E1) · E)

= (D1 + E1) ·
(
((−D1) · D)) ⊗ (−E1) · E

)
= (F1 + I1) ·

(
((−F1) · F)) ⊗ (−I1) · I

)
= (F1 · (−F1) · F)) ⊗ (I1 · (−I1) · I) = F) ⊗ I.

Thus, i is an isomorphism. �

Using e.g. [12, Proposition 2], we obtain the following.

Corollary 3.6. A linearly ordered abelian group A is Morita equivalent to semigroups �= (A),
= ≥ 2.

4. On J-relation
In this section, our aim is to prove that J = D in the matrix semigroup "2(A). For the semigroup
"2(R) of tropical matrices this is proved in [9, Theorem 3.7]. In [10, Theorem 6.1], it is shown that
J = D in the semigroup "= (R) of finitary tropical matrices.

Recall that there is a natural partial order on the set � (() of all idempotents of a semigroup (:
5 ≤ 4 iff 4 5 = 5 = 5 4. One writes 5 < 4 when 5 ≤ 4 and 5 ≠ 4.

In [9, Theorem 4.1], Johnson and Kambites proved that the idempotents in the semigroup of
2 × 2 matrices over the tropical semiring are of exactly four types. This result was generalized in
[11, Theorem 2.1] to the case of linearly ordered abelian groups.

Proposition 4.1. Let A be a linearly ordered abelian group. The set of idempotents of the semigroup
"2(A) is A ∪ B ∪ C, where

A =

{(
0 G

H 0

)���� G, H ∈ �, G + H ≤ 0
}
,

B =

{(
0 G

H G + H

)���� G, H ∈ �, G + H < 0
}
,

C =

{(
G + H G

H 0

)���� G, H ∈ �, G + H < 0
}
.
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We say that 4 is an idempotent of type A (type B, type C) if 4 ∈ A (resp. 4 ∈ B, 4 ∈ C).

Definition 4.2 ([5, Definition 1.9]). An idempotent element in a semigroup is called D-minimal if
it is minimal in the set of all idempotents in its D-class. A D-class is called locally minimal if it
contains a D-minimal idempotent.

We need the following two results.

Theorem 4.3 ([5, Theorem 1.16]). Every locally minimal D-class in a semigroup is a J -class.

Lemma 4.4 ([11, Lemma 3.1]). Let A be a linearly ordered abelian group. If 5 < 4 for two
idempotents 4, 5 ∈ � ("2(A)), then 4 ∈ A.

Theorem 4.5. If A is a linearly ordered abelian group, then J = D in the semigroup "2(A).

Proof. If � = {0}, then the claim is clear, so we assume that � ≠ {0}. In view of Theorem 4.3, it
suffices to prove that every D-class is locally minimal. Then every D-class is a J -class. Hence,
J = D.

Balanced matrices form one D-class. The set of all idempotents in that D-class is B ∪ C ∪{(
0 0

−0 0

)
| 0 ∈ �

}
. Due to Lemma 4.4, all idempotents in B and C are D-minimal. Since � ≠ {0},

B and C are nonempty. Thus, this D-class is locally minimal.
Let us prove that all idempotents in a D-class � of non-balanced matrices are D-minimal. To

this end, suppose that 5 ≤ 4, where 5 , 4 ∈ �. Non-balanced idempotent matrices must belong

to A, so 5 , 4 ∈ A, say 5 =

(
0 0

1 0

)
and 4 =

(
0 2

3 0

)
, where 0 + 1 < 0 and 2 + 3 < 0. Note that

dev( 5 ) = −0 − 1 > 0 and dev(4) = −2 − 3 > 0, so the equality dev( 5 ) = − dev(4) is not possible.
It follows that dev( 5 ) = dev(4) and, hence, 0 + 1 = 2 + 3. Now, 5 = 5 4 means that(

0 0

1 0

)
=

(
0 0

1 0

) (
0 2

3 0

)
=

(
0 ∨ (0 + 3) 0 ∨ 2

1 ∨ 3 0 ∨ (1 + 2)

)
and, therefore, 2 ≤ 0 and 3 ≤ 1. We conclude that 2+3 ≤ 0+3 ≤ 0+1 = 2+3. Hence, 2+3 = 0+3
and 0 = 2. Also, 0 + 3 = 0 + 1 and, so, 1 = 3. Thus, 4 = 5 , as needed.

Finally, we mention that each D-class �0, where 0 > 0, contains at least one idempotent(
0 −0
0 0

)
∈ A. �

5. Maximal subgroups

Maximal subgroups of a semigroup are those H -classes that contain idempotents. For the tropical
matrix semigroups over R or R ∪ {−∞}, maximal subgroups have been studied in several papers,
e.g. [9,8,16].

The next proposition describes those H -classes of "2(A) that contain idempotents.

Proposition 5.1. Let A be a linearly ordered abelian group. An H -class !DE ∩'IF of the semigroup
"2(A) contains an idempotent if and only if

D = E, I = F or I = −E, F = −D.

Proof. Necessity. Suppose that !DE ∩ 'IF contains an idempotent 4. Then 4 must have one of the
types A, B or C given in Proposition 4.1.

Suppose 4 is an idempotent of type A, i.e. 4 =

(
0 0

1 0

)
, where 0 + 1 ≤ 0. If 4 ∈ !1

DE ∩ '1
IF , then

1 = I, −0 = F, 0 = D and −1 = E. It follows that I = −E and F = −D. If 4 ∈ !2
DE ∩ '2

IF , then we
obtain the same equalities.

If 4 =

(
0 G

H G + H

)
∈ B, then G = D = E and H = I = F.

If 4 =

(
G + H G

H 0

)
∈ C, then −H = D = E and −G = I = F.
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Sufficiency. We show that each H -class !DD ∩ 'II contains an idempotent. Since the order is
linear, we have two possibilities for D + I.

If D + I ≥ 0, then −D− I ≤ 0 and 4 =

(
−D − I −I
−D 0

)
∈ !DD∩'II . It follows from Proposition 4.1

that the matrix 4 is idempotent.

If D + I < 0, then 4 =

(
0 D

I D + I

)
∈ !DD ∩ 'II . By Proposition 4.1, the matrix 4 is idempotent.

Suppose now that I = −E and F = −D. Then the matrix 4 =

(
0 D

I 0

)
∈ !DE ∩ 'IF . Since

I + D = D − E ≤ 0, we see that 4 is an idempotent by Proposition 4.1. �

Thus, the H -classes that contain an idempotent have two possible forms: !DD ∩ 'II and !DE ∩
'−E,−D.

Due to Theorem 3.2, each idempotent � in the semigroup "2(A) is D-related to the idempotent(
0 −| dev(�) |
0 0

)
of type A. Since all maximal subgroups of "2(A) within the same D-class are

isomorphic to each other [7, Proposition 2.3.6], each maximal subgroup of "2(A) is isomorphic to

an H -class �G of an idempotent �G =

(
0 G

0 0

)
, where G ∈ �, G ≤ 0.

Since �G ∈ !1
G0 ∩ '1

0,−G , by Proposition 2.9, we know that �G = !G0 ∩ '0,−G . The equalities
(2.2) and (2.3) imply that

�G = (!1
G0 ∩ '1

0,−G) ∪ (!2
G0 ∩ '2

0,−G) = {-0 | 0 ∈ �} ∪ {.0 | 0 ∈ �},

where
-0 =

(
0 0 + G

0 0

)
and .0 =

(
0 0

0 − G 0

)
.

Straightforward calculations show that, for all 0, 1 ∈ �,

-0-1 = -0+1, -0.1 = .0+1 = .1-0 and .0.1 = -0+1−G . (5.1)

Hence, �G is an abelian group. Now, A′ = {-0 | 0 ∈ �} is a subgroup of �G , which is isomorphic
to A. Thus, we have the following result.

Proposition 5.2. Let A be a linearly ordered abelian group. Then the maximal subgroup �0 of
"2(A) is isomorphic to the group (A, +).

With the H -classes of the form �G , where G < 0, the situation is more complicated. The group
structure of such H -classes depends upon the properties of G and A. In the next result, Z2 = {0, 1}
is the additive group of integers modulo 2.

Proposition 5.3. If the element G < 0 is divisible by 2 in a linearly ordered abelian group A, then
the H -class �G of the semigroup "2(A) is isomorphic to the group A × Z2.

Proof. The subgroup A′ of �G has index 2. We can find an element 0 ∈ � such that 20 = G. Then
the element .0 ∈ �G \ A′ has order 2. Therefore, �G � A′ × Z2 � A × Z2. �

Corollary 5.4. If A is a divisible linearly ordered abelian group, then each maximal subgroup of
"2(A) is isomorphic to A or A × Z2.

We will also consider the non-divisible linearly ordered abelian group (Z, +).
Proposition 5.5. Up to isomorphism, the maximal subgroups of the semigroup ("2(Z), ·) are Z
and Z × Z2.

Proof. By Proposition 5.2, the maximal subgroup �0 is isomorphic to Z.
Consider now maximal subgroups �G , where G ∈ Z, G < 0. If G is even, then �G � Z × Z2, by

Proposition 5.3. Assume that G is odd and consider the mapping

W : �G → �G , / ↦→ /2.

Since �G is commutative, W is a group homomorphism. Now, -20 = -2
0 = -0 if and only if 0 = 0 and

.20−G = .2
0 = -0 cannot hold (because G is odd). We see that Ker(W) = {-0}. Thus, W is injective. It

is easy to see that W(�G) = {-0 | 0 ∈ Z} � Z, so �G � Z. �
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6. Conclusion

In this paper, we gave descriptions of Green’s relations for semigroups of 2 × 2 matrices over any
linearly ordered abelian group with respect to tropical multiplication. We also studied maximal
subgroups in such semigroups. In future investigations, it would be interesting to see if such descrip-
tions can be extended to matrices of bigger order or to matrices over linearly ordered abelian groups
with an externally added bottom element.
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Greeni seosed teist järku ruutmaatriksitele üle lineaarselt järjestatud

Abeli rühmade

Marilyn Kutti ja Valdis Laan

Me vaatleme teist järku ruutmaatriksite poolrühmi üle lineaarselt järjestatud Abeli rühmade sellise korrutamis-

tehte suhtes, mis on defineeritud sarnaselt troopilise algebraga. Uurime selliste poolrühmade Greeni seoseid.

Muuhulgas kirjeldame ära poolrühmade R-, L- ja H-klassid ning esitame lihtsa kriteeriumi, mille abil saab
tuvastada, kas kaks maatriksit on D-seoses. Tõestame, et D-seos langeb kokku J-seosega. Lisaks uurime
selliste poolrühmade maksimaalseid alamrühmi. Tuleb välja, et kui vaadeldav Abeli rühm on jaguv, siis nendel

maksimaalsetel alamrühmadel on kaks võimalikku kuju.
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