ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Computation of nonlinear eigenvalues based on the Ore determinant: preliminary results; pp. 366–378
PDF | https://doi.org/10.3176/proc.2024.4.06

Authors
Miroslav Halás, Arvo Kaldmäe, Ülle Kotta ORCID Icon, Juraj Slačka
Abstract

The concept of eigenvalues has recently been generalized for nonlinear systems, but the method to find them is missing. Unlike the linear case, now one has to deal with non-commutative polynomials from the Ore ring. In the paper, the Ore determinant of a polynomial matrix, describing generic linearization of the state equations, is used instead of the standard definition of determinant of the polynomial matrix with real coefficients. It is shown how to compute the Ore determinant of a polynomial matrix associated with the nonlinear system and conjectured that the eigenvalues can be found from factorization of the Ore determinants of the corresponding system matrix. Moreover, it is proved that such factorization into the first-order polynomials can always be done. Many examples illustrate the computations and concepts throughout the paper.

References

1. Boothby, W. M. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, New York, 1975.

2. Conte, G., Moog, C. H. and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Theory and Applications. 2nd ed. Springer, London, 2007.
https://doi.org/10.1007/978-1-84628-595-0

3. Halás, M. An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica, 2008, 44(5), 1181–1190.
https://doi.org/10.1016/j.automatica.2007.09.008

4. Halás, M., Kawano, Y., Moog, C. H. and Ohtsuka, T. Realization of a nonlinear system in the feedforward form: a polynomial approach. IFAC Proc. Vol., 2014, 47(3), 9480–9485.
https://doi.org/10.3182/20140824-6-ZA-1003.00990

5. Halás, M. and Moog, C. H. Definition of eigenvalues for a nonlinear system. IFAC Proc. Vol., 2013, 46(23), 600–605.
https://doi.org/10.3182/20130904-3-FR-2041.00148

6. Kawano, Y. and Ohtsuka, T. Observability analysis of nonlinear systems using pseudo-linear transformation. IFAC Proc. Vol., 2013, 46(23), 606–611. 
https://doi.org/10.3182/20130904-3-FR-2041.00100

7. Kawano, Y. and Ohtsuka, T. Stability criteria with nonlinear eigenvalues for diagonalizable nonlinear systems. Syst. Control Lett., 2015, 86, 41–47.
https://doi.org/10.1016/j.sysconle.2015.10.001

8. Kawano, Y. and Ohtsuka, T. PBH tests for nonlinear systems. Automatica, 2017, 80, 135–142.
https://doi.org/10.1016/j.automatica.2017.02.027

9. Kotta, Ü., Belikov, J., Halás, M. and Leibak, A. Degree of Dieudonné determinant defines the order of nonlinear system. Int. J. Control, 2019, 92(3), 518–527.
https://doi.org/10.1080/00207179.2017.1361042

10. Kotta, Ü., Leibak, A. and Halás, M. Non-commutative determinants in nonlinear control theory: preliminary ideas. In 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam, 17–20 December 2008. IEEE, 2008, 815–820.
https://doi.org/10.1109/ICARCV.2008.4795622

11. Lam, T. Y., Leroy, A. and Ozturk, A. Wedderburn polynomials over division rings, ii. Contemp. Math., 2008, 456, 73–98.
https://doi.org/10.1090/conm/456/08885

12. Leroy, A. Pseudo linear transformations and evaluation in Ore extensions. Bull. Belg. Math. Soc., 1995, 2, 321–347.
https://doi.org/10.36045/bbms/1103408724

13. Meng, Q., Yang, H. and Jiang, B. On structural accessibility of network nonlinear systems. Syst. Control Lett., 2021, 154, 104972.
https://doi.org/10.1016/j.sysconle.2021.104972

14. Menini, L. and Tornambe, A. Symmetries and Semi-invariants in the Analysis of Nonlinear Systems. Springer, London, 2011.
https://doi.org/10.1007/978-0-85729-612-2

15. Ore, O. Linear equations in non-commutative fields. Ann. Math., 1931, 32(3), 463–477.
https://doi.org/10.2307/1968245

16. Ore, O. Theory of non-commutative polynomials. Ann. Math., 1933, 34(3), 480–508.
https://doi.org/10.2307/1968173

17. Padoan, A. and Astolfi, A. Singularities and moments of nonlinear systems. IEEE Trans. Automat. Control, 2020, 65(8), 3647–3654.
https://doi.org/10.1109/TAC.2019.2951297

18. Sarafrazi, M. A. Comments on ‘On structural accessibility of network nonlinear systems’. Syst. Control Lett., 2022, 160, 105124.
https://doi.org/10.1016/j.sysconle.2021.105124

19. Spivak, M. A Comprehensive Introduction to Differential Geometry. Publish or Perish, Houston, 1999.

20. Taelman, L. Dieudonné determinants for skew polynomial rings. J. Algebra Appl., 2006, 5(1), 89–93.
https://doi.org/10.1142/S0219498806001600

21. Wu, M.-Y. A new concept of eigenvalues and eigenvectors and its applications. IEEE Trans. Automat. Control, 1980, 25, 824–826.
https://doi.org/10.1109/TAC.1980.1102448

22. Zheng, Y., Willems, J. C. and Zhang, C. A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control, 2001, 46, 1782–1788.
https://doi.org/10.1109/9.964691

Back to Issue