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Abstract. The concept of eigenvalues has recently been generalized for nonlinear systems, but the method to find them is missing.
Unlike the linear case, now one has to deal with non-commutative polynomials from the Ore ring. In the paper, the Ore determinant
of a polynomial matrix, describing generic linearization of the state equations, is used instead of the standard definition of deter-
minant of the polynomial matrix with real coefficients. It is shown how to compute the Ore determinant of a polynomial matrix
associated with the nonlinear system and conjectured that the eigenvalues can be found from factorization of the Ore determinants
of the corresponding system matrix. Moreover, it is proved that such factorization into the first-order polynomials can always be
done. Many examples illustrate the computations and concepts throughout the paper.
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1. INTRODUCTION

The concept of eigenvalues plays an important role in linear systems theory. It is well known that eigenvalues
characterize the stability of a linear system and are also useful for finding various state transformations, for
instance, state equations into the diagonal form. The notion of eigenvalues has recently been extended
to nonlinear systems [5], and it was shown that such a concept provides generalization of the one known
from linear theory. The concept of eigenvalues of the nonlinear system was actually already introduced in
[14] under the name of characteristic function. The concept may also be viewed as a direct extension of
that from [21], which addresses the linear time-varying systems. The extension becomes obvious once the
tangent linear system is associated with the nonlinear system. Similar to the linear case, the eigenvalues
of the nonlinear system can be used for various state transformations (see [5]), and recently it was shown
in [7] that they play a similar role in the characterization of the stability of nonlinear systems. Moreover,
in the papers [13,18], eigenvalues were used to address the structural accessibility problem, and in [6,8],
eigenvalues were used in the development of an accessibility/observability criterion. A different (geometric)
extension of the eigenvalue was considered in [17] that is useful in model reduction problems.

* Corresponding author, arvo@ioc.ee



M. Halás et al.: Nonlinear eigenvalues and Ore determinant 367

However, the open problem is the computation of the eigenvalues of a nonlinear system. In the linear
case, eigenvalues can be found as the roots of the characteristic polynomial of a linear control system, that
is, the determinant of the matrix ! I→A, if we consider a linear system ẋ = Ax. In this paper, we propose that
the eigenvalues of a nonlinear system can be found in a similar way if non-commutative generalization of the
determinant is applied. In more detail, consider an autonomous nonlinear system ẋ = f (x) with which we
associate the tangent linear system dẋ = Adx, where A = ∀ f/∀x, and then employ its polynomial description
sI→A. The polynomials in such a description belong, however, into the (non-commutative) skew polynomial
ring, often called the Ore ring. The paper suggests the idea that the eigenvalues of a nonlinear system can
be found from factorization of the Ore determinants1 of the matrix sI→A. The claim is not formally proven
in the paper but presented as a conjecture. However, the numerous examples run by us support the idea,
and one such example is also presented in the paper. Moreover, a novel method for computation of the Ore
determinants of the matrix sI→A is given, and it is also proven that the Ore determinants of sI→A are always
factorizable into factors of degree one over the corresponding skew polynomial ring.

For the sake of simplicity, we restrict the attention to the second-order systems. Such simplification
allows to focus on the presented ideas. The general case can be handled, in principle, analogously, but is
technically much more involved and requires the help of symbolic computation tools like Mathematica or
Maple to complete the computations.

2. ALGEBRAIC SETTING

In this paper, we will use the algebraic setting of [2,3,22] adapted to nonlinear autonomous systems, defined
by the differential equations of the form

ẋ = f (x), (1)

where the state x(t) ↑ Rn and the components of f are assumed to be from the field K of meromorphic
functions in variables from the set {x1, . . . ,xn}. Define the derivative operator d/dt that acts on functions
#(x1, . . . ,xn) ↑ K as follows:

#̇ =
n

!
i=1

∀#
∀xi

ẋi,

where we substitute ẋi from (1).
Let E denote the vector space of differential one-forms defined as E = spanK {d∃ ;∃ ↑ K }, where d is

the standard differential operator. The operator d/dt induces the derivative operator that acts on E , and it is
denoted by the same symbol. Let % = !i &id∃i be in E , then

%̇ = !
i
(&̇id∃i +&id∃̇i).

The operator d/dt also induces the left skew polynomial ring K [s] of the polynomials in s (interpreted
as d/dt) over K with the standard addition and the non-commutative multiplication defined by the commu-
tation rule

s∃ = ∃ s+ ∃̇ , (2)

where ∃ ↑ K . The ring K [s] represents the ring of the derivative operators that act on any % ↑ E as
follows: (

k

!
i=0

&isi

)
% =

k

!
i=0

&i%(i),

where %(i) := d/dt(%(i→1)) for i ↓ 1.

1 Note that the Ore determinant is not unique unlike the classical determinant.
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Lemma 1 (Ore condition [15,16]). For all non-zero a,b ∈ K [s], there exist non-zero a1,b1 ∈ K [s] such
that a1b = b1a.

The tangent linear system, associated with the nonlinear system (1), is given by

dẋ = Adx, (3)

where A = (∂ f/∂x) ∈ K n×n. Using the tangent linear system description (3), one can now associate with
the state equations (1) their polynomial system description

(sI −A)dx = 0.

Example 1 ([5]). Consider the system

ẋ1 = x1 + x1x2, ẋ2 = x2
2. (4)

The polynomial description of this system can be found as

(
s−1− x2 −x1

0 s−2x2

)(
dx1
dx2

)
=

(
0
0

)
. (5)

3. EIGENVALUES OF THE NONLINEAR SYSTEM

Definition 1 ([5]). A function λ ∈ K is said to be an eigenvalue and a non-zero vector e ∈ K n an eigen-
vector of system (1) if they satisfy

λe+ ė = Ae, (6)

where A = ∂ f/∂x.

Example 2 (continuation of Example 1). In order to find eigenvalues and eigenvectors for the system (4),
we are looking for λ ∈ K and a non-zero vector (e1,e2)T ∈ K 2 such that

λ
(

e1
e2

)
+

(
ė1
ė2

)
=

(
1+ x2 x1

0 2x2

)(
e1
e2

)
.

Table 1 shows various solutions for λ , e1 and e2 that can be checked by direct substitution.

.

.

.

.

e1 e2 λ e1 e2
x1 0 1+ x2 1 0

x1x2 x2
2 2 0

x2 0 2x2 x1/x2 1
2x2 0 2x1/x2 2

Table 1. Possible eigenvalues and various eigenvectors for the system in 
Example 2

λ
0

1
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3.1. Equivalence of eigenvalues

Example 2 demonstrates that, unlike the linear case, there may be more than n eigenvalues for the nth order
nonlinear system. Hence, a natural question to be asked is this: in what sense is Definition 1 a generalization
of the results from the linear theory, where the nth order system has exactly n eigenvalues (counted with
multiplicity)? We will answer this question below.

First, recall the notion of the so-called d/dt-conjugacy [11,12], adapted in this paper from pseudo-
derivation to standard derivation as a special case. The d/dt-conjugacy can be understood as an equivalence
relation under which the possible eigenvalues of a nonlinear system split into at most n equivalence classes.
Let λ and λ̃ be two eigenvalues for the system (1) with the eigenvectors e and ẽ, respectively. Assume that
e and ẽ are dependent, that is, ẽ = ce for some non-zero c ∈ K . From (6), one has

λ̃ ẽ+ ˙̃e = Aẽ ⇔ λ̃ce+ ċe+ cė = Ace ⇔ (λ̃ + ċc−1)e+ ė = Ae,

which implies the relation λ = λ̃ + ċc−1. The above motivates the following definition.
Definition 2. Elements α and β in K are said to be d/dt-conjugate if there exists a non-zero element c in
K such that

α = β + ċc−1.

Example 3 (continuation of Example 2). Consider the eigenvalues listed in Table 1. One can show that, for
instance, λ = 1 and λ̃ = 1+ x2 are d/dt-conjugate. Indeed, for c = 1/x2, λ = λ̃ + ċc−1. Also, λ = 0 and
λ̃ = 1+ x2 are d/dt-conjugate, since λ̃ = λ + ċc−1 for c = x1.
Proposition 1. Let λ̃ be an eigenvalue of the nonlinear system (1). Then

λ = λ̃ + ċc−1 , c ∈ K (7)

is also an eigenvalue of the nonlinear system (1).
Proof. Observe that λ̃ being an eigenvalue of the nonlinear system (1) implies

λ̃ ẽ+ ˙̃e = Aẽ. (8)

From (7), we have λ̃ = λ − ċc−1. After substituting it into (8), we get

(λ − ċc−1)ẽ+ ˙̃e = Aẽ ⇔ λ ẽ
c
− ċẽ

c2 +
˙̃e
c
= A

ẽ
c

⇔ λ ẽ
c
+

( ˙̃e
c

)
= A

ẽ
c
,

resulting in λe+ ė = Ae, where e = ẽ/c.

Proposition 2. The d/dt-conjugacy is an equivalence relation.
Proof. One has to show that the d/dt-conjugacy is reflexive, symmetric, and transitive.

• Reflexivity: one has to prove that any α ∈ K is d/dt-conjugate to itself. Indeed, α = α + ȧa−1 for
any non-zero a ∈ R.

• Symmetry: one has to prove that α ∈ K is d/dt-conjugate to β ∈ K if and only if β is d/dt-
conjugate to α . That is, for α,β ∈ K , we have α = β + ȧa−1 for some non-zero a ∈ K if and only
if β = α + ḃb−1 for some non-zero b ∈ K . Set b = 1/a, then β = α − ȧ(a−1)2a = α − ȧa−1, which
implies α = β + ȧa−1.

• Transitivity: one has to prove that if α ∈K is d/dt-conjugate to β ∈K and β ∈K is d/dt-conjugate
to γ ∈ K , then α ∈ K is d/dt-conjugate to γ ∈ K . That is, if

α = β + ȧa−1 (9)

for some non-zero a ∈ K and
β = γ + ḃb−1 (10)

for some non-zero b ∈ K , then α = γ + ċc−1 for some non-zero c ∈ K . After substituting (10) into
(9), we get α = γ + ḃb−1 + ȧa−1 = γ + ˙(ba)(ba)−1. Set c = ba, and the result follows.

.
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4. EIGENVALUES AND ORE DETERMINANTS

In this section, in subsection 4.1, we give the definition of the Ore determinant of a matrix with elements
from the ring K [s]. Then, in subsection 4.2, we propose an alternative way of computing the Ore determi-
nants of the matrix sI→A, which describes the tangent linear system (3) of the nonlinear state equations (1).
It is shown in subsection 4.3 that the Ore determinants of the matrix sI →A, associated with the nonlinear
system, can always be factorized into the first-order polynomials. Finally, in subsection 4.4, we suggest
to compute the nonlinear eigenvalues of the system (1) from the factorization of the Ore determinant of
the matrix sI →A. The latter is given as a conjecture (i.e. without a proof), and the example supports this
hypothesis.

Unlike the classical case, the entries of the matrix sI →A are now not polynomials with real coefficients
but non-commutative polynomials from the skew polynomial ring K [s]. Therefore, one has to use non-
commutative determinants. To define a ‘good’ non-commutative notion of a determinant is not a trivial task.
Some definitions have been introduced in [15,20]. Since we use the Ore (skew) polynomial ring, the natural
choice is to use the concept of the Ore determinant, although in the literature, the Dieudonne determinant
has also been introduced and applied [9,20] for nonlinear systems.

4.1. Computation of the Ore determinant by definition

For the sake of simplicity and clarity of presentation, we will consider below only the case of 2↔2 matrices.
The notion of the Ore determinant is closely related to the problem of finding the solution of the set of linear
equations, defined over a non-commutative polynomial ring K [s]:

k11x1 + k12x2 = l1, k21x1 + k22x2 = l2 (11)

or given in a matrix form as

K
(

x1
x2

)
=

(
l1
l2

)
, K =

(
k11 k12
k21 k22

)
↑ K [s]2↔2, l1, l2 ↑ K [s].

To eliminate the variable x2, we multiply the first equation by ∋22 ↑ K [s] and the second equation by
∋12 ↑ K [s] and require that ∋22k12 = ∋12k22, which is the Ore condition from Lemma 1:

∋22k11x1 +∋22k12x2 = ∋22l1, ∋12k21x1 +∋12k22x2 = ∋12l2.

Now, subtracting the second equation from the first yields (∋22k11 →∋12k21)x1 = ∋22l1 →∋12l2. Since K [s]
is the Ore ring, then it can be embedded into a skew field F (s), called the field of left fractions. Thus, in
F (s) there exists (∋22k11 →∋12k21)→1, which results in

x1 = (∋22k11 →∋12k21)
→1(∋22l1 →∋12l2).

The expression ∋22k11 →∋12k21 is called the Ore determinant. Similarly, one can find ∋21 and ∋11 such that
∋21k11 = ∋11k21, which is again the Ore condition. Now, multiplying the first equation of (11) by ∋21 and
the second equation by ∋11 gives us

∋21k11x1 +∋21k12x2 = ∋21l1, ∋11k21x1 +∋11k22x2 = ∋11l2.

This time, we subtract the first equation from the second to get (∋11k22→∋21k12)x2 = ∋11l2→∋21l1, resulting
in

x2 = (∋11k22 →∋21k12)
→1(∋11l2 →∋21l1).
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The expression κ22k11 −κ12k21 is the second Ore determinant. In general, for a p× p matrix with entries in
K [s], there are p different Ore determinants. Without additional restrictions, the determinants may be even
polynomials of different degrees (see [10]). Since we want the Ore determinant to be the generalization of
the standard commutative determinant, we have to specify the definition of the Ore determinant further by
introducing additional restrictions. Sometimes the result is called the restricted Ore determinant. Note that
the definition of the Ore determinant relies on the Ore condition from Lemma 1. In fact, the Ore condition
is just a way to overcome the problems caused by non-commutativity. If the elements a and b in Lemma 1
commute, one can take a1 = a and b1 = b. Moreover, if one of them, let us say a, would be zero, then it
is natural to take a1 = 0 and b1 = b. Therefore, from now on, we restrict the Ore condition in Lemma 1 as
follows:

• if a %= 0 and b %= 0, then choose a1 %= 0 and b1 %= 0 such that a1b = b1a and dega1 = dega and
degb1 = degb;

• if a = 0, b %= 0, then choose a1 = 0 and b1 = b;
• if a %= 0, b = 0, then choose a1 = a and b1 = 0;
• if a = b = 0, then choose a1 = b1 = 0.

Example 4 (continuation of Example 1). Recall the polynomial description (5) and denote

sI −A =

(
k11 k12
k21 k22

)
=

(
s−1− x2 −x1

0 s−2x2

)
.

Then,
Ore det1(sI −A) = κ22k11 −κ12k21,

where κ22k12 = κ12k22, that is, κ22(−x1) = κ12(s−2x2) and κ22 and κ12 can be found as κ22 = s−1−3x2,
κ12 =−x1. Therefore,

Ore det1(sI −A) = (s−1−3x2)(s−1− x2) = s2 − (4x2 +2)s+2x2
2 +4x2 +1. (12)

The second Ore determinant is
Ore det2(sI −A) = κ11k22 −κ21k12,

where κ21k11 = κ11k21, that is, κ21(s−1− x2) = κ11 ·0. Hence, κ21 = 0, κ11 = s−1− x2, and one gets the
second Ore determinant as

Ore det2(sI −A) = (s−1− x2)(s−2x2). (13)

4.2. Alternative computation of the Ore determinant

There is an alternative way to compute the Ore determinants of the matrix sI − A corresponding to the
system of the form (1). Note that there exists an output function for the system (1) such that the polynomial
description of the corresponding output differential equation equals the Ore determinant of the matrix sI−A
for this system. First, we demonstrate this fact by an example.

Example 5 (continuation of Example 1). Consider the output function y = x1. Note that ẏ = x1 + x1x2.
Using the state elimination algorithm from [2], one can find the output differential equation of the system

ÿ =
2ẏ2

y
−2ẏ+ y. (14)

The polynomial description of this equation can be found as follows. First, we apply the differential operator
to the equation (14) and express the time derivatives of dy as dÿ = s2dy, dẏ = sdy to get

[
s2 −

(
4ẏ
y
−2

)
s−

(
1− 2ẏ2

y2

)]
dy = 0.

.

.



372 Proceedings of the Estonian Academy of Sciences, 2024, 73, 4, 366–378

Then, substituting y = x1 and ẏ = x1 + x1x2 gives, after rearrangement,
[
s2 → (4x2 +2)s+2x2

2 +4x2 +1
]

dy = 0. (15)

Observe that the polynomial in (15) is the Ore determinant (12) of the system. Our final observation is
related to the fact that to get the polynomial description (15) of the system, we do not have to find the output
differential equation explicitly, as this may not always be a trivial task. One can instead work with the
tangent linear system and with the differentials of the system variables. Apply the differential operator to
(4) to get

dẋ1 = (1+ x2)dx1 + x1dx2, dẋ2 = 2x2dx2, dy = dx1,

which results in
dy = dx1,
dẏ = (1+ x2)dx1 + x1dx2,
dÿ = ((1+ x2)2 + x2

2)dx1 +(2x1 +4x1x2)dx2.

From the first two equations, being a set of linear equations in dx1 and dx2, we get dx1 = dy, dx2 =
1/x1 [dẏ→ (1+ x2)dy], which, after substituting into the last equation, results in

dÿ = (2+4x2)dẏ→ (2x2
2 +4x2 +1)dy.

From the above, we get [
s2 → (2+4x2)s+2x2

2 +4x2 +1
]

dy = 0,

which is the polynomial description (15).

The ideas depicted in the above example can be generalized as follows. Consider the system (1), where
x = (x1,x2), and choose the output function y = x1. The tangent linear system reads

dẋ1 = a11dx1 +a12dx2, dẋ2 = a21dx1 +a22dx2, dy = dx1, (16)

where ai j = ∀ fi/∀x j, i, j = 1,2. If a12 = 0, meaning that the system is not observable from y = x1, then one
can easily find the Ore determinant of the matrix sI →A from the definition as

Ore det1(sI →A) = (s→a22)(s→a11).

If a12 ↗= 0, meaning that the system is observable from y = x1, then the polynomial description of the output
differential equation can be found as follows:

dy = dx1,
dẏ = a11dx1 +a12dx2,
dÿ = (ȧ11 +a2

11 +a12a21)dx1 +(ȧ12 +a11a12 +a12a22)dx2.

From the first two equations, we have dx1 = dy and dx2 = 1
a12

(dẏ→ a11dy), which, after substituting into
the last equation and using dÿ = s2dy and dẏ = sdy, results in the polynomial description of the output
differential equation of the system

[
s2 → (a11 +a22 + ȧ12a→1

12 )s→ (ȧ11 +a12a21 →a11a22 →a11ȧ12a→1
12 )

]
dy = 0. (17)

In what follows, we will show that the polynomial in (17) is the Ore determinant of the matrix sI→A, defined
by the system (1) for n = 2. The polynomial description of the system (1) reads for n = 2 as

(sI →A)dx =
(

k11 k12
k21 k22

)(
dx1
dx2

)
:=

(
s→a11 →a12
→a21 s→a22

)(
dx1
dx2

)
=

(
0
0

)
.
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Then,
Ore det1(sI →A) = ∋22k11 →∋12k21,

where ∋22k12 = ∋12k22, that is, ∋22(→a12) = ∋12(s→ a22) and ∋22 and ∋12 can be found as ∋22 = s→ a22 →
ȧ12a→1

12 , ∋12 =→a12. Hence,

Ore det1(sI →A) = (s→a22 → ȧ12a→1
12 )(s→a11)→ (→a12)(→a21)

= s2 → (a11 +a22 + ȧ12a→1
12 )s→ (ȧ11 +a12a21 →a11a22 →a11ȧ12a→1

12 ).

Similarly, it can be shown that Ore det2(sI →A) is either

Ore det2(sI →A) = (s→a11)(s→a22)

if a21 = 0, or, if a21 ↗= 0, it can be found from the polynomial description of the output differential equation
of the system for the output function y = x2, from which the system is observable.

Example 6. Consider the system
ẋ1 = x1x2, ẋ2 = x1 → x2

with its polynomial description as

(sI →A)
(

dx1
dx2

)
:=

(
s→ x2 →x1
→1 s+1

)(
dx1
dx2

)
=

(
0
0

)
.

Then Ore det1(sI →A) can be found from the polynomial description of the output differential equation of
the system for the output function y = x1. We get

y = x1, ẏ = x1x2, ÿ = x1x2
2 + x2

1 → x1x2.

From the first two equations, we have x1 = y and x2 = ẏ/y, which we substitute into the last equation:

ÿ =
ẏ2

y
+ y2 → ẏ. (18)

The polynomial description of the output differential equation (18) can be found as follows:

dÿ =
(

2ẏ
y
→1

)
dẏ+

(
2y→ ẏ2

y2

)
dy,

which can be rewritten as [
s2 →

(
2ẏ
y
→1

)
s→

(
2y→ ẏ2

y2

)]
dy = 0.

After substituting y = x1 and ẏ = x1x2, we get
[
s2 +(1→2x2)s+ x2

2 →2x1
]

dy = 0. Therefore,

Ore det1(sI →A) = s2 +(1→2x2)s+ x2
2 →2x1. (19)

Similarly, Ore det2(sI →A) can be found from the polynomial description of the output differential equation
of the system for the output function y = x2. This time we get

y = x2, ẏ = x1 → x2, ÿ = x1x2 → x1 + x2.

From the first two equations, we have x1 = ẏ+ y and x2 = y, which we substitute into the last equation:

ÿ = ẏy+ y2 → ẏ. (20)
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The polynomial description of the output differential equation (20) can be found as follows: dÿ= (y−1)dẏ+
(ẏ+2y)dy, which can be rewritten as

(s2 − (y−1)s− ẏ−2y)dy = 0.

After substituting y = x2 and ẏ = x1 − x2, we get
[
s2 +(1− x2)s− x1 − x2

]
dy = 0. Therefore,

Ore det2(sI −A) = s2 +(1− x2)s− x1 − x2. (21)

This method of finding the Ore determinants of the matrix sI −A, using the state elimination algorithm
of [2], is more straightforward and can also be applied for the higher-order systems of the form (1).

4.3. Factorization of the Ore determinant

It is commonly known that factorization into the first-order polynomials is not guaranteed even for ordinary
polynomials. However, we will prove that, for the polynomial that results from the Ore determinant of the
matrix sI −A associated with nonlinear systems, such factorization exists. The natural question is: what
makes the Ore determinant of the matrix sI −A so special compared to the other Ore (skew) polynomials?
The main key element is the application of the straightening-out theorem for an autonomous nonlinear
system. The Ore determinant of the matrix sI −A associated with the transformed system is equal to sn,
which is obviously factorizable into the first-order polynomials. This determinant in the new coordinates is
related to the Ore determinant of sI −A in the original system coordinates. The second key factor results
from the observation that the Ore determinant of sI −A can be alternatively computed from a polynomial
description of the differential output equation of the system, associated with some output function. The third
key element is that the differential output equation can always be transformed into the feedforward form,
meaning that its polynomial description can be factorized into the first-order polynomials.

Consider the system (1), where x = (x1,x2), and its tangent linear system (16). If a12 = 0, then the first
Ore determinant of sI −A is (s− a22)(s− a11), that is, it is factorizable into the first-order polynomials.
If a12 %= 0, the first Ore determinant of sI −A can be found from the polynomial description of the output
differential equation of the system for the output function y = x1, as described in subsection 4.2. Let us say
this output differential equation is

ÿ = F1(ẏ,y) (22)

for some F1 ∈ K . Similarly, if a21 = 0, then the second Ore determinant of sI−A is (s−a11)(s−a22), that
is, it is factorizable into the first-order polynomials. If a21 %= 0, the second Ore determinant can be found
from the polynomial description of the output differential equation of the system for the output function
y = x2, as described in subsection 4.2. Let us say this output differential equation is

ÿ = F2(ẏ,y) (23)

for some F2 ∈ K .
To show that the Ore determinants of sI −A are always factorizable into the first-order polynomials,

it remains to show that the polynomial descriptions of the output differential equations (22) and (23) are
always factorizable into the first-order polynomials. This can be shown in general for an output differential
equation

ÿ = F(ẏ,y), (24)

where F ∈ K . The so-called straightening-out theorem plays a key role here.

Theorem 1 (straightening-out [1,19]). For a nonlinear system of the form (1), where f is analytic, there
exist local coordinates ξ1, . . . ,ξn such that in the new coordinates one gets

ξ̇1 = 0, · · · , ξ̇n−1 = 0, ξ̇n = 1

in a neighbourhood of a point where f is non-zero.

.
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Note that the local properties are a subset of the generic properties. In what follows, we are not interested
in the generic properties but in the local ones. Moreover, any meromorphic function is locally analytic on
some open subset of Rn. Of course, there may exist different factorizations of Ore determinants around
different points because the straightening-out transformation might not be the same for all points. However,
this is not an uncommon situation in nonlinear control. This also happens if one applies the Frobenius
theorem (in integrating only locally exact one-forms) or in state elimination to find the input-output equation.

An easy observation yields the following conclusion.

Lemma 2. For the equation (24), there exists a choice of states z = #(y, ẏ), # ↑ K 2 that results in the state
equations

ż1 = z2, ż2 = 0, y = h(z1,z2), h ↑ K . (25)

Proof. Define (x1,x2) = (y, ẏ) to get ẋ1 = x2, ẋ2 = F(x2,x1), y = x1. Then, applying the straightening-out
theorem, there exists a change of coordinates ∃ = ((x), ( ↑ K 2 such that

∃̇1 = 0, ∃̇2 = 1, y = g(∃1,∃2) (26)

for some g ↑ K . Finally, the change of coordinates (z1,z2) = (∃1∃2,∃1) transforms the equations (26) into
the form (25).

Note that the equations (25) are in the so-called feedforward form. It was shown in [4] that the polyno-
mial description of the output differential equation of such a system can be factorized over K [s] into the
first-order polynomials.

Theorem 2. The polynomial a(s) in the polynomial description a(s)dy = 0 of the nonlinear system (24) can
always be factorized as

a(s) = (s→&2)(s→&1),

where &1,&2 are in K .

Proof. First, observe that for every nonlinear system in the form (24), there exists, by Lemma 2, a change
of coordinates that transforms the system equations into the feedforward form (25). Then, for the equations
(25) one has

dy = c1dz1 + c2dz2,

where ci = ∀h/∀ zi, i = 1,2. Next, eliminate dz1. Applying the Ore condition from Lemma 1, there exist
polynomials s→&1 and )1 in K [s] such that (s→&1)c1 = )1s. Actually, &1 = ċ1c→1

1 and )1 = c1, both of
which are elements of K . Therefore,

(s→&1)dy = )1sdz1 +(s→&1)c2dz2.

However, from (25), it follows that sdz1 = dz2 and sdz2 = 0. Thus, after substitution and rearrangement, one
gets

(s→&1)dy = ∗2dz2

for some ∗2 ↑ K . Finally, we eliminate dz2. Applying the Ore condition, there exist polynomials s→&2
and )2 in K [s] such that (s→&2)∗2 = )2s. Actually, &2 = ∗̇2∗→1

2 and )2 = ∗2, both of which are elements of
K . Then,

(s→&2)(s→&1)dy = )2sdz2.

From (25), it follows that sdz2 = 0. Hence,

(s→&2)(s→&1)dy = 0,

which completes the proof.
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Example 7 (continuation of Example 6). The Ore determinants of the system matrix sI −A in Example 6
are given by (19) and (21) and can be factorized as

Ore det1(sI −A) =
(

s+ x1
x2
− x2

)(
s+1− x2 − x1

x2

)
,

Ore det2(sI −A) =
(

s+ x2
2

x1−x2

)(
s+1− x2 − x2

2
x1−x2

)
.

Example 8. Consider the system
ẋ1 = x2, ẋ2 =−x1.

The Ore determinants of the matrix sI −A, defined by the polynomial description of the system, are

Ore det1(sI −A) = Ore det2(sI −A) = s2 +1,

which is an irreducible polynomial over R[s]. However, it is reducible over K [s] as

s2 +1 =

(
s− x1

x2

)(
s+

x1

x2

)
.

4.4. Computation of eigenvalues from the factorization of the Ore determinant

The definition of nonlinear eigenvalues (and eigenvectors) is not suitable for their calculation because the
definition results in a system of nonlinear partial differential equations, depending on the eigenvalue as
an unknown variable. Once the eigenvalues are known, the eigenvectors are much easier to find. How-
ever, the computation methods to find nonlinear eigenvalues are still missing. Researchers who have used
nonlinear eigenvalues in their studies have found them either by the trial-and-error method or from other
heuristic considerations. In this paper, we suggest to find nonlinear eigenvalues from the factorization of
the Ore determinant of the non-commutative polynomial matrix sI −A, describing the system. Since we
have not succeeded in justifying our computational method formally, we present it below as a conjecture.
Although there is no formal proof, numerous examples demonstrate that the results satisfy the definition of
eigenvalues. So far, we have not come across any counterexamples.

Conjecture 1. Assume that the Ore determinant of the matrix sI −A can be factorized as

Ore det(sI −A) = (s−λ1 − ċ1c−1
1 ) · · ·(s−λn − ċnc−1

n ) (27)

for some λi ∈ K and non-zero ci ∈ K . Then λi ∈ K , i = 1, . . . ,n, are eigenvalues of the system (1). Note
that if 0 #= ci ∈ R, then (27) becomes Ore det(sI −A) = (s−λ1) · · ·(s−λn).

Our idea is based on two aspects. First, in the case of linear systems, the method reduces to the well-
known result, that is, finding the roots of the ordinary determinant of the matrix of real numbers. It is,
therefore, natural to expect a certain analogy in the case of nonlinear systems. Second, since from the
definition of the eigenvalue λ and the eigenvector e,

eλ + ė = Ae,

then the left hand side of this equation looks a lot like the commutation rule in the skew polynomial ring
K [s]:

es+ ė = se.

We do not suggest to say that one can replace λ by s, but only point out this similarity. The similarity
suggests that there should be some relation between the factorization of the Ore determinant of the matrix
sI −A and the eigenvalues λ of the system (1).

.
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Example 9 (continuation of Example 1). The Ore determinants of the matrix sI − A were computed in
Example 4 as (12) and (13) for the system (4). Thus, following our conjecture, the relations (12) and (13)
suggest that 1+3x2, 2x2 and 1+ x2 are the eigenvalues of the system (4). Indeed, 1+ x2 and 2x2 are listed
in Table 1 as eigenvalues of the system (4). Also, one can check by direct computation that 1+ 3x2 is an
eigenvalue corresponding to an eigenvector (1/x2

2,0)
T .

Moreover, one can rewrite the Ore determinants as

Ore det1(sI −A) = (s−1−3x2)(s−1− x2) = (s−1−3x2 − ċ1c−1
1 )(s−1− ċ2c−1

2 ) and
Ore det2(sI −A) = (s−1− x2)(s−2x2) = (s−1− x2 − ˙̄c1c̄−1

1 )(s− ˙̄c2c̄−1
2 ),

where c1 = 1, c2 = x2, c̄1 = 1, and c̄2 = x2
2. Thus, Conjecture 1 suggests that 1 and 0 are also eigenvalues of

the system (4). Indeed, one can see that 0 and 1 are eigenvalues of the system (4) listed in Table 1.

5. CONCLUSIONS

This paper studies the difficult but neglected problem of computing the eigenvalues of a nonlinear system. It
was suggested that these eigenvalues can be found from the factorization of the Ore determinant of the matrix
sI −A, defined by the polynomial description of the nonlinear system. The paper presents only preliminary
ideas on computing the eigenvalues. The proof of the claim is left for future research. An alternative
method for computing the Ore determinants of the matrix sI −A was also suggested. In particular, one
can find the Ore determinant of sI −A by computing the polynomial description of the respective output
function (e.g. y = x1) of the nonlinear control system. Finally, it was shown that the Ore determinant
of sI −A can always be factorized into the first-order polynomials over the skew polynomial ring K [s].
Another open problem is to show that all Ore determinants actually belong to the same equivalence class
and that a representative of this equivalence class is a polynomial that describes the tangent linear system
(3) from any (fully) observable output function y = h(x). This would significantly simplify computation of
the Ore determinants compared to finding them from the definition. Yet another problem worth studying is
to investigate whether the Dieudonne determinant can be of some help in finding the nonlinear eigenvalues.
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et selline teguriteks lahutus on alati võimalik. Erinevaid mõisteid ja arvutusi illustreerivad näited.
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