Given a finite group G, the coprime graph of G, denoted by Γ(G), is defined as an undirected graph with the vertex set G, and for distinct x, y ∈ G, x is adjacent to y if and only if (o(x), o(y)) = 1, where o(x) and o(y) are the orders of x and y, respectively. This paper classifies the finite groups with split, threshold and chordal coprime graphs, as well as gives a characterization of the finite groups whose coprime graph is a cograph. As some applications, the paper classifies the finite groups G such that Γ(G) is a cograph if G is a nilpotent group, a dihedral group, a generalized quaternion group, a symmetric group, an alternating group, or a sporadic simple group.
1. Abawajy, J., Kelarev, A. and Chowdhury, M. Power graphs: a survey. Electron. J. Graph Theory Appl., 2013, 1(2), 125–147.
https://doi.org/10.5614/ejgta.2013.1.2.6
2. Alraqad, T. A., Saeed, M. S. and Alshawarbeh, E. S. Classification of groups according to the number of end vertices in the coprime graph. Indian J. Pure Appl. Math., 2021, 52, 105–111.
https://doi.org/10.1007/s13226-021-00132-6
3. Brauer, R. and Fowler, K. A. On groups of even order. Ann. Math., 1955, 62(3), 565–583.
https://doi.org/10.2307/1970080
4. Cameron, P. J. Graphs defined on groups. Int. J. Group Theory, 2022, 11(2), 53–107.
5. Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
6. Delgado, A. L. and Wu, Y.-F. On locally finite groups in which every element has prime power order. Illinois J. Math., 2002, 46(3), 885–891.
https://doi.org/10.1215/ijm/1258130990
7. Dorbidi, H. R. A note on the coprime graph of a group. Int. J. Group Theory, 2016, 5(4), 17–22.
8. Hamm, J. and Way, A. Parameters of the coprime graph of a group. Int. J. Group Theory, 2021, 10(3), 137–147.
9. Henderson, P. B. and Zalcstein, Y. A graph-theoretic characterization of the PV class of synchronizing primitives. SIAM J. Comput., 1977, 6(1), 88–108.
https://doi.org/10.1137/0206008
10. Johnson, D. L. Topics in the theory of group presentations. London Mathematical Society Lecture Note Series, 42. Cambridge University Press, 1980.
11. Kelarev, A. V. Graph Algebras and Automata. Marcel Dekker, New York, 2003.
https://doi.org/10.1201/9781482276367
12. Kelarev, A. V., Ryan, J. and Yearwood, J. Cayley graphs as classifiers for data mining: the influence of asymmetries. Discrete Math., 2009, 309(17), 5360–5369.
https://doi.org/10.1016/j.disc.2008.11.030
13. Ma, X., Wei, H. and Yang, L. The coprime graph of a group. Int. J. Group Theory, 2014, 3(3), 13–23.
14. Ma, X., Zahirović, S., Lv, Y. and She, Y. Forbidden subgraphs in enhanced power graphs of finite groups. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 2024, 118, 110.
https://doi.org/10.1007/s13398-024-01611-1
15. Manna, P., Cameron, P. J. and Mehatari, R. Forbidden subgraphs of power graphs. Electron. J. Comb., 2021, 28(3), P3.4.
https://doi.org/10.37236/9961
16. Selvakumar, K. and Subajini, M. Classification of groups with toroidal coprime graphs. Australas. J. Comb., 2017, 69(2), 174–183.
17. Rather, B. A., Pirzada, S. and Zhou, G. F. On distance Laplacian spectra of certain finite groups. Acta Math. Sin. Engl. Ser., 2023, 39, 603–617.
https://doi.org/10.1007/s10114-022-0359-4
18. Zahidah, S., Mahanani, D. M. and Oktaviana, K. L. Connectivity indices of coprime graph of generalized quaternion group. J. Indones. Math. Soc., 2021, 27(3), 285–296.
https://doi.org/10.22342/jims.27.3.1043.285-296