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Abstract. Given a finite group G, the coprime graph of G, denoted by Γ(G), is defined as an undirected graph with the vertex set G,
and for distinct x,y ∈ G, x is adjacent to y if and only if (o(x),o(y)) = 1, where o(x) and o(y) are the orders of x and y, respectively.
This paper classifies the finite groups with split, threshold and chordal coprime graphs, as well as gives a characterization of the
finite groups whose coprime graph is a cograph. As some applications, the paper classifies the finite groups G such that Γ(G) is a
cograph if G is a nilpotent group, a dihedral group, a generalized quaternion group, a symmetric group, an alternating group, or a
sporadic simple group.
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1. INTRODUCTION

In algebraic graph theory, a popular and interesting research topic is graph representations of an algebraic
structure. For example, for the algebraic structure ‘group’, Cayley graphs defined on a group are very
famous and have a long history. On the other hand, graphs from algebraic structures have been actively
investigated in the literature since they have valuable applications. For example, Cayley graphs can be used
as classifiers for data mining (see [12]). Moreover, graph algebras and automata are closely related (see
[11]).

Given a finite group G, one can define a variety of graphs on G by some properties of G, for example, the
power graph of a group [1] and the commuting graph of a group [3]. Distance Laplacian spectra of power
graphs were studied in [17]. Notice that in group theory, the order of an element is one of the most basic and
important concepts. In [13], the authors introduced the concept of a coprime graph. Let G be a finite group.
The coprime graph of G, denoted by Γ(G), is an undirected graph with the vertex set G; two distinct vertices
x,y are adjacent in Γ(G) if and only if o(x) and o(y) are relatively prime, namely (o(x),o(y)) = 1, where
o(x) and o(y) are the orders of x and y, respectively. Note that the identity element is always adjacent to any
other vertex in Γ(G). Ma et al. [13] then studied some relationships between coprime graphs and groups.
Dorbidi [7] showed that the clique number of Γ(G) is always equal to the chromatic number of Γ(G) for any
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finite group G, and classified the finite groups whose coprime graph is a complete r-partite graph or a planar
graph. Selvakumar and Subajini [16] classified the finite groups whose coprime graph has (non)orientable
genus one. Hamm and Way [8] studied the coprime graph of a dihedral group and gave the exact value of the
independence number of Γ(G), where G is dihedral. Moreover, they also studied perfect coprime graphs.
Alraqad et al. [2] obtained the finite groups whose coprime graph has precisely three end-vertices. Zahidah
et al. [18] investigated some connectivity indices of Γ(G), where G is a generalized quaternion group.

In this paper, any graph means a simple graph, which is an undirected graph without loops and multiple
edges. Assume that Γ and ∆ are two graphs. If Γ has no induced subgraphs isomorphic to ∆, then Γ is said
to be a ∆-free graph. This is equivalent to saying that ∆ is a forbidden subgraph of Γ. In the literature, some
important graphs can be defined by using graph structures or forbidden subgraphs. For example, by using
graph structures for the famous split graph, it can be defined as the vertex set partitioned into the disjoint
union of an independent set and a clique. On the other hand, by using forbidden subgraphs, the split graph
can be defined as one that has no induced subgraphs isomorphic to C4, C5 and 2K2, where Cn denotes the
cycle of length n and 2K2 denotes two independent edges.

If a graph has no induced subgraphs isomorphic to the four vertices path P4, then the graph is called
a cograph. If a graph has no induced subgraphs isomorphic to P4, C4 and 2K2, then the graph is called a
threshold graph. A graph is said to be a chordal graph provided that it contains no induced cycles of length
greater than 3. Namely, in a chordal graph, every cycle of length 4 or more has a chord. Note that if a graph
is C4-free and P4-free, then it is chordal. Moreover, it is clear that any threshold graph is also a cograph.
Threshold graphs have some applications in computer science (see [9]).

Recently, Cameron [4] surveyed various graphs from a group G, where the vertex set is G and edges
of these graphs reflect the structure of G in various ways, such as the power graph, enhanced power graph,
commuting graph, and others. In this paper, Cameron proposed the question: for which groups is some
graph of a group a perfect graph, a cograph, a split graph, or a threshold graph (see [4, Question 14])? This
question regarding the power graph and enhanced power graph has been studied by Manna et al. [15] and
Ma et al. [14], respectively. Motivated by Cameron’s question, we try to solve the following question in this
paper.

Question 1.1. For which finite groups is the coprime graph a cograph, a split graph, or a threshold graph?

In 2021, Hamm and Way [8] gave a characterization of the finite groups whose coprime graph is perfect,
and classified the finite abelian groups with perfect coprime graphs. In this paper, we classify all finite
groups with split, threshold, and chordal coprime graphs. We also give a characterization of the finite
groups whose coprime graph is a cograph. As applications, we find the finite groups G for which Γ(G) is a
cograph if G is a nilpotent group, a dihedral group, a generalized quaternion group, a symmetric group, an
alternating group, or a sporadic simple group.

2. PRELIMINARIES

This section will introduce some definitions and notations in group theory and graph theory.
Every group considered in our paper is finite. For convenience, we always use G to denote a finite group

with the identity e. Denote by πe(G) and π(G) the set of orders of elements of G and the set of prime
divisors of |G|, respectively. For some element g ∈ G, the order of g, denoted by o(g), is the size of the
set of all elements belonging to the cyclic subgroup ⟨g⟩, which is generated by the element g. Particularly,
an element is called an involution if its order is 2. As usual, denote by Zn the cyclic group of order n. We
note that a finite group is a nilpotent group if and only if the finite group is the direct product of its Sylow
subgroups.

Given a graph, say Γ, denote by V (Γ) and E(Γ) the vertex set and edge set of Γ, respectively. We use
Pn to denote a path with n vertices. Furthermore, denote by 2K2 a matching with four vertices, namely, two
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independent edges. If {x,y} ∈ E(Γ), then we denote this by x− y. In a graph, we use x1 − x2 −·· ·− xn to
denote a path isomorphic to Pn.

The following observation can be obtained directly from the definition of the coprime graph of a group.

Observation 2.1. If H is a subgroup of G, then Γ(H) is an induced subgraph of Γ(G).

From Observation 2.1, we get the following result.

Observation 2.2. Γ(G) is a split graph (resp. a threshold graph, a chordal graph, or a cograph) if and only
if for any subgroup H of G, Γ(H) is a split graph (resp. a threshold graph, a chordal graph, or a cograph).

In this paper, Observations 2.1 and 2.2 will be used frequently and at times without explicit reference to
them.

3. C4C4C4-FREE COPRIME GRAPHS

This section classifies the finite groups whose coprime graph is C4-free. Our main theorem is the following.

Theorem 3.1. Γ(G) is C4-free if and only if G is isomorphic to either a p-group or Z2 ×Q, where p is a
prime and Q is a q-group for some odd prime q.

We first give two results before giving the proof of Theorem 3.1.

Lemma 3.2. ([14, Proposition 2.6]) Let G be a p-group of order n. Then Γ(G) ∼= K1,n−1. In particular,
Γ(G) is C4-free.

Lemma 3.3. Let G be a group with π(G) = {2,q}, where q is an odd prime. Then Γ(G) is C4-free if and
only if G ∼= Z2 ×Q, where Q is a q-group.

Proof. We first prove the sufficiency of our result. Suppose that G ∼= Z2 ×Q with a q-group Q. Note that G
has a unique involution, say u, and so u must belong to the center of G. It follows that q is a prime divisor of
the order of any element in G\{e,u}, and so G\{e,u} induces an empty graph in Γ(G). Moreover, since e
is adjacent to every other vertex in Γ(G), we have that Γ(G) is C4-free, as desired.

We next prove the necessity of this lemma. Suppose that Γ(G) is C4-free. Let a ∈ G with o(a) = q. If G
has two distinct involutions u,v, then u−a− v−a−1 −u is an induced cycle of length 4, a contradiction. It
follows that G has a unique involution belonging to the center of G. If G has an element w of order 4, then
w− a−w−1 − a−1 −w is an induced cycle isomorphic to C4, which is also a contradiction. Thus, G has a
unique Sylow 2-subgroup isomorphic to Z2. Now, let Q be a Sylow q-subgroup. Then we have that Q has
index 2 in G, which implies that Q is normal in G. Also, since π(G) = {2,q}, it follows that G ∼= Z2 ×Q,
as desired. 2

We are now ready to prove Theorem 3.1.

Proof. The sufficiency follows trivially from Lemmas 3.2 and 3.3. For the converse, suppose that Γ(G) is
C4-free. Assume, to the contrary, that G has two elements a,b such that o(a) = q1 and o(b) = q2, where q1
and q2 are two distinct odd primes. Then a−b−a−1 −b−1 −a is an induced cycle isomorphic to C4, which
is impossible. We conclude that π(G)⊆ {2,q}, where q is an odd prime. If π(G) = {2,q}, then Lemma 3.3
completes our proof. Otherwise, G is a p-group for some prime p, and the required result follows from
Lemma 3.2. 2
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4. GROUPS WHOSE COPRIME GRAPH IS A COGRAPH

The family of cographs is the smallest class of graphs that possesses the 1-vertex graphs and is closed under
two operations: complementation and disjoint union. Furthermore, we know that every cograph is perfect.

In the following, we first define a family of finite groups. A finite group G is called an Ω-group provided
that G satisfies the following two conditions:

(i) o(x) = pmqn for each x ∈ G, where p and q are two different primes, and m and n are two non-negative
integers;

(ii) there are no pairwise distinct primes p,q,r such that {pq, pr} ⊆ πe(G).

We get the following result from the definition of an Ω-group.

Observation 4.1. Any subgroup of an Ω-group is also an Ω-group.

The following result is our main theorem of this section and characterizes the finite groups whose co-
prime graph is a cograph.

Theorem 4.2. Γ(G) is P4-free if and only if G is an Ω-group, which in turn is true if and only if Γ(G) is a
cograph.

Proof. We first show that the sufficiency is valid. Suppose that G is an Ω-group. Assume, by way of
contradiction, that Γ(G) has an induced path P4, say a−b−c−d. Note that e /∈{a,b,c,d}. Now, considering
(i) and the order of b, we have the following two cases:

Case 1. π(⟨b⟩) = {p,q}, where p,q are distinct primes.

Note that (o(b),o(d)) ̸= 1. If π(⟨d⟩) = {p,q}, then, since (o(a),o(b)) = 1, it must be (o(a),o(d)) = 1,
which is impossible. It follows that only one of p and q must belong to π(⟨d⟩). Without loss of generality,
we may assume p ∈ π(⟨d⟩). Now, by (ii), we must have that o(d) = pm with m ≥ 1, and so p | o(a) as
(o(a),o(d)) ̸= 1. As a result, we have p | (o(a),o(b)), which implies that a and b are non-adjacent, a
contradiction.

Case 2. π(⟨b⟩) = {p}, where p is a prime.

From Case 1 and (i), we see that o(c) = qm with m ≥ 1, where q is a prime, which is different from p.
Since a ∈ N(b), a /∈ N(d), and (o(b),o(d)) ̸= 1, it follows that π(⟨d⟩) = {p,r}, where r is a prime with
r /∈ {p,q}. As a consequence, it must have π(⟨a⟩) = {q,r}. Namely, there exist distinct primes p,q,r such
that {pr,qr} ⊆ πe(G), contrary to (ii).

We next prove the necessity of this theorem. Suppose that Γ(G) is P4-free. If G has an element x of order
pqr with pairwise distinct primes p,q,r, then it is easy to verify that xp − xqr − xpr − xq is an induced path
isomorphic to P4, a contradiction. It follows that (i) holds. In order to prove that G is an Ω-group, it suffices
to show that (ii) is valid. Assume, for the sake of contradiction, that there exist pairwise distinct primes
p,q,r such that {pq, ps} ⊆ πe(G). Let u,v ∈ G with o(u) = pq and o(v) = ps. Then one can obtain easily
that u− vp −up − v is an induced path isomorphic to P4, a contradiction. Thus, (ii) holds. We conclude that
G is an Ω-group. 2

Note that if G is a group with |π(G)| ≤ 2, then G must be an Ω-group. Thus, we have the following
result:

Corollary 4.3. Let G be a group with |π(G)| ≤ 2. Then Γ(G) is a cograph.

As we know, a finite group is nilpotent if and only if this group is the direct product of its Sylow sub-
groups. Particularly, in a finite nilpotent group, an element of order p and an element of order q can com-
mute, where p,q are distinct primes. In the following, as a corollary of Theorem 4.2, we will characterize
all finite nilpotent groups whose coprime graph is a cograph.
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Corollary 4.4. Let G be a nilpotent group. Then Γ(G) is a cograph if and only if G is either a p-group or
isomorphic to P×Q, where P and Q are a p-group and a q-group, respectively.

Given two non-trivial groups H and K, for which direct product H ×K is the coprime graph a cograph?
Next, we will characterize the direct products H ×K whose coprime graph is a cograph.

Corollary 4.5. Let H and K be two non-trivial groups. Then Γ(H ×K) is a cograph if and only if π(H)⊆
{p,q} and π(K)⊆ {p,q}, where p,q are distinct primes.

Proof. The sufficiency follows trivially from Corollary 4.3. For the necessity, suppose that Γ(H ×K) is a
cograph. Suppose for a contradiction that π(H) = {p,q,r}, where p,q,r are pairwise distinct primes. Take
an element of prime order, say s. Without loss of generality, we may assume that s /∈ {p,q}. Then we
deduce that H ×K has elements of order ps and qs. By (ii), we see that H ×K is not an Ω-group, and so
Γ(H ×K) is not a cograph by Theorem 4.2, a contradiction. Thus, we may assume that π(H) ⊆ {p,q},
which also implies that |π(K)| ≤ 2. If |π(H)| = 1; then, similarly, we must have that either |π(K)| = 1 or
π(K) = {p,q}, and so, in this case, we may assume that π(K)⊆ {p,q}. If π(H) = {p,q}, then there is no
prime in π(K) such that r /∈ {p,q}, which implies that π(K)⊆ {p,q}, as desired. 2

For a group G, if its every non-trivial element is of prime power order, then G is called a CP-group [6].
Given a prime p, it is clear that every p-group is also a CP-group. Delgado and Wu characterized all finite
CP-groups (see [6, Theorem 4]). Now, the following result holds.

Corollary 4.6. Γ(G) is a cograph if G is a CP-group.

4.1. Dihedral and generalized quaternion groups

For positive integer n ≥ 3, the dihedral group D2n with order 2n is defined as the group of symmetries
of a regular polygon on n points, including all rotations and reflections. It is clear that D2n is a class of
non-abelian groups. In general, D2n is defined by the following presentation:

D2n = ⟨a,b : an = b2 = e,bab = a−1⟩. (1)

Also, aib is an involution for any 1 ≤ i ≤ n, and D2n has a partition

{{ab,a2b, . . . ,b},⟨a⟩}. (2)

Theorem 4.7. Let D2n be the dihedral group as presented in (1). Then Γ(D2n) is a cograph if and only if
n = pmqn, where p,q are two distinct primes and m,n are two non-negative integers.

Proof. We first suppose that Γ(D2n) is a cograph. Note that Γ(⟨a⟩) is also a cograph and a cyclic group is
nilpotent. It follows from Corollary 4.4 that o(a) = n = pmqn, where p,q are two distinct primes and m,n
are two non-negative integers, as desired. For the converse, let n = pmqn, where p,q are two distinct primes
and m,n are two non-negative integers. Then (2) implies that

πe(D2n) = {2,d : d | pmqn}.

If 2 ∈ {p,q}, then |π(D2n)| ≤ 2, and so Γ(D2n) is a cograph by Corollary 4.3, as desired. If 2 /∈ {p,q}, since
D2n has no elements of order 2p and 2q, we have that D2n is an Ω-group, and so Γ(D2n) is a cograph by
Theorem 4.2, as desired. 2

Johnson introduced the generalized quaternion group of order 4n with n ≥ 2, which is denoted by Q4n
[10]. In general, Q4n has a presentation as follows:

Q4n = ⟨a,b : an = b2,a2n = b4 = e,b3ab = a−1⟩.
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Clearly, Q4n is a family of non-abelian groups. Note that o(aib) = 4 for each 1 ≤ i ≤ 2n, and Q4n has a
partition {{aib : 1 ≤ i ≤ 2n},⟨a⟩}. Thus, we have

πe(Q4n) = {4,d : d | 2n}. (3)

Now, by (3) and a similar argument as in the proof of Theorem 4.7, we get the following result.

Theorem 4.8. Γ(Q4n) is a cograph if and only if n = pm or 2mqn, where p is a prime, q is an odd prime,
and m,n are positive integers.

4.2. Symmetric groups and alternating groups

The symmetric group of order n!, denoted by Sn, is the group consisting of all permutations on n letters. As
we know, the symmetric group is important in many different areas of mathematics, including combinatorics
and group theory, since every finite group is a subgroup of some symmetric group. Note that Sn is abelian if
and only if n ≤ 2.

Theorem 4.9. Γ(Sn) is a cograph if and only if n ≤ 6.

Proof. Note first the fact that πe(S6) = {1,2,3,4,5,6}. Then it is easy to see that S6 is an Ω-group, and
so by Observation 4.1 and Theorem 4.2, we have that Γ(Sn) is a cograph for any n ≤ 6. Now, consider S7.
Note that (12)(234),(12)(34567) ∈ S7. Since o((12)(234)) = 6 and o((12)(34567)) = 10, we have that S7
is not an Ω-group, and so Γ(S7) is not a cograph by Theorem 4.2. Now, Observation 4.1 implies the desired
result. 2

In symmetric group Sn, the set of all even permutations is a subgroup, which is called the alternating
group on n letters and is denoted by An. Note that for any n ≥ 5, An is a simple group.

Theorem 4.10. Γ(An) is a cograph if and only if n ≤ 7.

Proof. Note the fact that πe(A7) = {1,2,3,4,5,6,7}. It follows that A7 is an Ω-group. As a result, we have
that Γ(An) is a cograph for every n ≤ 7 by Observation 4.1 and Theorem 4.2. Now, considering A8, we
have that (123)(45)(67),(123)(45678) ∈ A8. Since o((123)(45)(67)) = 6 and o((123)(45678)) = 15, we
see that A8 is not an Ω-group, and so Γ(A8) is not a cograph by Theorem 4.2. This also implies that Γ(An)
is not a cograph for each n ≥ 8, as required. 2

4.3. Sporadic simple groups

Theorem 4.11. Let G be a sporadic simple group. Then Γ(G) is a cograph if and only if G is isomorphic to
either M11 or M22.

Proof. It is well known that there exist precisely 26 sporadic simple groups. For the Mathieu group M11,
we have that πe(M11) = {1,2,3,4,5,6,8,11}, and so M11 is an Ω-group, which implies that Γ(M11) is a
cograph by Theorem 4.2. For the Mathieu group M12, we have that πe(M12) = {1,2,3,4,5,6,8,10,11},
and so M12 is not an Ω-group, that is, Γ(M12) is not a cograph. For the Mathieu group M22, we have that
πe(M22) = {1,2,3,4,5,6,7,8,11}, and similarly, we have that Γ(M22) is a cograph. Note that Corollary 4.5
implies that Z3 ×A5 is not an Ω-group. Since Z3 ×A5 ≤ M23 by the ATLAS of finite groups [5], we have
that Γ(M23) is not a cograph. Now, since the Mathieu group M24 has a maximal subgroup isomorphic to
M23, it follows that Γ(M24) is also not a cograph.
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By [5], we first have that the McLaughlin group McL has a subgroup isomorphic to A8. As a result of
Theorem 4.10, we see that Γ(McL) is not a cograph. Now, note that for each 1 ≤ i ≤ 3, the Conway group
Coi has a subgroup isomorphic to McL [5]. Consequently, Γ(Coi) is not a cograph for each 1 ≤ i ≤ 3. By [5]
again, it follows that the Janko group J1, Hall-Janko group J2, Janko group J3, Janko group J4, Held group
He, Harada-Norton group HN, Thompson group T h, Baby Monster group B, Monster group M, O’Nan
group O’N, Lyons group Ly, Rudvalis group Ru, and Higman-Sims group HS contain D6 ×D10, A5 ×D10,
Z3 ×A6, M24, S4 ×L3(2), A12, A9, Co2, A9, D6 ×D10, A11, A8, and Z4 ×A5 as subgroups, respectively.
Therefore, by Corollary 4.5 and Theorem 4.10, we have that every graph of the coprime graphs of these 13
groups above is not a cograph. Finally, since every group of Suz, Fi22, Fi23 and Fi’24 contains M12 as a
subgroup, the coprime graphs of these four groups are not cographs. 2

5. SPLIT, THRESHOLD AND CHORDAL COPRIME GRAPHS

This section will classify the finite groups whose coprime graph is split, threshold, or chordal. The following
is the main result of this section.

Theorem 5.1. For a finite group G, the following statements are equivalent:
(a) Γ(G) is split;
(b) Γ(G) is threshold;
(c) Γ(G) is chordal;
(d) G is isomorphic to either a p-group or Z2 ×Q, where p is a prime and Q is a q-group for some odd
prime q.

We first prove a lemma which gives a sufficient condition for 2K2-free coprime graphs.

Lemma 5.2. If G is a group with |π(G)| ≤ 3, then Γ(G) is 2K2-free.

Proof. Suppose for a contradiction that Γ(G) has an induced subgraph isomorphic to 2K2, say ∆, which has
the vertex set {a,b,c,d}, where {a,b},{c,d} ∈ E(∆). Note that e /∈ {a,b,c,d}. We first claim that o(a) is
not a prime power. In fact, if o(a) = pm for some prime p and positive integer m, then p | o(c) and p | o(d),
which implies that p | (o(c),o(d)), a contradiction since c and d are adjacent. As a result, o(a) is not a
prime power, and similarly, o(b) is also not a prime power. Note that if o(a) has pairwise distinct three
prime divisors, then only the vertex adjacent to a is e. Thus, o(a) has precisely two distinct prime divisors.
Since (o(a),o(b)) = 1, it follows that o(b) is a prime power, a contradiction. 2

We are now ready to prove Theorem 5.1.

Proof. Firstly, by Theorem 3.1 and the definitions of a split graph, a threshold graph and a chordal graph,
it is easy to see that any of (a), (b) and (c) can imply (d). Now, suppose that G is isomorphic to either a
p-group or Z2 ×Q, where p is a prime and Q is a q-group for some odd prime q. It suffices to prove that
Γ(G) is split, threshold and chordal. Firstly, it follows from Lemma 5.2 that Γ(G) is 2K2-free. Then, by
Corollary 4.3, we deduce that Γ(G) is P4-free. This also implies that Γ(G) is C5-free, since in a graph, an
induced C5 must contain an induced C4. As a result, Γ(G) is split, threshold and chordal by Theorem 3.1, as
desired. 2

6. CONCLUSION

This article focuses on finite groups and their coprime graphs, which are undirected graphs with the vertex
set of the group G. Two distinct vertices x and y are adjacent if and only if the orders of x and y are
coprime (i.e., (o(x),o(y)) = 1). We classified finite groups that have split, threshold and chordal coprime
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graphs and provided a characterization for finite groups whose coprime graphs are cographs. Furthermore,
we applied this classification to groups such as nilpotent groups, dihedral groups, generalized quaternion
groups, symmetric groups, alternating groups, and sporadic simple groups, particularly focusing on their
coprime graphs as cographs, based on the group’s structure.
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Lõplikud rühmad tükelduva, künnisega ja kõõludega kaasneva graafiga

Jin Chen, Shixun Lin ja Xuanlong Ma

Olgu G lõplik rühm. Sellega kaasnevaks graafiks nimetatakse graafi, mille tippude hulk on G ning selle
erinevad tipud x ja y (x,y ∈ G) on kaasnevad siis, kui nende järgud o(x) ja o(y) on ühistegurita.
Artiklis leitakse lõplikud rühmad, millega kaasnevad graafid on tükelduvad (split), künnisega (threshold)
ja kõõludega (chordal). Artiklis kirjeldatakse ka lõplikke rühmi, millega kaasnevad graafid on kograafid.
Saadud tulemuste rakendustena kirjeldatakse nilpotentseid rühmi, dieedrirühmi, üldistatud kvaternioonide
rühmi, sümmeetrilisi rühmi, märgimuudurühmi ja sporaadilisi lihtsaid rühmi, millega kaasnevad graafid on
kograafid.
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