ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Review article
A review of temporal and spatial dispersions of linear and quadratic finite elements in linear elastic wave propagation problems; pp. 279–316
PDF | https://doi.org/10.3176/proc.2024.3.11

Authors
Radek Kolman, Miloslav Okrouhlík, Alena Kruisová
Abstract

The dispersion behaviour of the finite element method, applied to the treatment of stress wave propagation tasks in an elastic solid continuum, is reviewed and complemented with the authors’ contributions in the field, along with substantial details of finite element technology. It is shown how finite element dispersion disqualifies to a certain extent the stress wave propagation modelling and, as such, cannot be completely eradicated. The paper, however, reveals the ways how the dispersion effect (actually, modelling errors) could be minimized. The effects of spatial and temporal dispersions of the finite element method are treated. 1D and 2D linear and quadratic finite elements and their suitability are analysed for use with implicit and explicit integration methods. Historical as well as new, up-to-date approaches are also reviewed. The paper closes with recommendations for values of mesh size and timestep size, mass matrices and direct time integrations with respect to dispersion errors in finite element modelling of elastic wave propagation problems in solids.

References

Abboud, N. and Pinsky, P. M. 1992. Finite element dispersion analysis for the three-dimensional second-order scalar wave equation. Int. J. Numer. Methods Eng.35(6), 1183–1218. 
https://doi.org/10.1002/nme.1620350604

Achenbach, J. D. 1973. Wave Propagation in Elastic Solids. North-Holland Pub. Co., Amsterdam.

Bathe, K.-J. 1996. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New Jersey.

Bathe, K.-J. and Noh, G. 2012. Insight into an implicit time integration scheme for structural dynamics. Comput. Struct.98–99, 1–6.
https://doi.org/10.1016/j.compstruc.2012.01.009

Bažant, Z. P. and Celep, Z. 1982. Spurious reflection of elastic waves in nonuniform meshes of constant and linear strain unite elements. Comput. Struct.15(4), 451–459.
https://doi.org/10.1016/0045-7949(82)90080-3

Belytschko, T. and Hughes, T. J. R. (eds). 1983. Computational Methods for Transient AnalysisIn Computational Methods in Mechanics1. North-Holland Pub. Co., Amsterdam, New York.

Belytschko, T. and Mullen, R. 1978. On dispersive properties of finite element solutions. In Modern Problems in Elastic Wave Propagation (Miklowitz, J. and Achenbach, J., eds). John Wiley and Sons, 67–82.

Belytschko, T., Liu, W. K. and Moran, B. 2000. Nonlinear Finite Elements for Continua and Structures. John Wiley and Sons, Chichester.

Benson, D. J. 1998. Stable time step estimation for multi-material Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng., 167(1–2), 91–205.
https://doi.org/10.1016/S0045-7825(98)00119-4

Brepta, R. and Okrouhlík, M. 1984. Dispersion properties of a plane continuum model consisted of rectangular triangular finite elements. Research report Z-966/84. Institute of Thermomechanics, Prague, Czech Republic.

Brepta, R. and Okrouhlík, M. 1986. Dispersive properties of rectangular and square element in 2D regions. Research report Z-998/86. Institute of Thermomechanics, Prague, Czech Republic.

Brepta, R., Okrouhlík, M. and Valeš, F. 1985. Wave Propagation and Impact Phenomena in Solids and Methods of Solution. Academia, Prague, Czech Republic. 

Brepta, R., Valeš, F., Červ, J. and Tikal, B. 1996. Rayleigh wave dispersion due to spatial (FEM) discretization of a thin elastic solid having non-curved boundary. Comput. Struct., 58(6), 1233–1244.
https://doi.org/10.1016/0045-7949(95)00218-9

Brillouin, L. 1953. Wave Propagation in Periodic Structures. Dover Publication, New York.

Celep, Z. and Bažant, Z. P. 1983. Spurious reflection of elastic waves due to gradually changing finite element size. Int. J. Numer. Methods Eng., 19(5), 631–646.
https://doi.org/10.1002/nme.1620190503

Červ, J., Brepta, R., and Valeš, F. 1996. Acoustic surface waves in media discretized by FEM. Acustica82(1), 235.

Červ, J., Adámek, V., Valeš, F., Gabriel, D. and Plešek, J. 2016. Wave motion in a thick cylindrical rod undergoing longitudinal impact. Wave Motion66, 88–105. 
https://doi.org/10.1016/j.wavemoti.2016.05.007

Chin, R. C. Y. 1975. Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problems for hyperbolic equations. J. Comput. Phys18(3), 233–247.
https://doi.org/10.1016/0021-9991(75)90001-7

Cho, S. S., Park, K. C. and Huh, H. 2013. A method for multidimensional wave propagation analysis via component-wise partition of longitudinal and shear waves. Int. J. Numer. Methods Eng.95(3), 212–237. 
https://doi.org/10.1002/nme.4495

Cho, S. S., Kolman, R., González, J. A. and Park, K. C. 2019. Explicit multistep time integration for discontinuous elastic stress wave propagation in heterogeneous solids. Int. J. Numer. Methods Eng.118(5), 276– 302. 
https://doi.org/10.1002/nme.6027

Chopra, A. K. 2001. Dynamics of Structures. Prentice-Hall, New York, USA.

Christon, M. A. 1999. The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng.173(1), 147–166.
https://doi.org/10.1016/S0045-7825(98)00266-7

Chung, J. and Hulbert, G. M. 1993. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech.60(2), 371–375.
https://doi.org/10.1115/1.2900803

Cottrell, J. A., Reali, A., Bazilevs, Y. and Hughes, T. J. R. 2006. Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng.195(41–43), 5257–5296.
https://doi.org/10.1016/j.cma.2005.09.027

Courant, R. 1943. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Amer. Math. Soc.49, 1–23.
https://doi.org/10.1090/S0002-9904-1943-07818-4

Dauksher, W. and Emery, A. F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements. Finite Elem. Anal. Des.26(2), 115–128.
https://doi.org/10.1016/S0168-874X(96)00075-3

Dauksher, W. and Emery, A. F. 2000. The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput. Methods Appl. Mech. Eng.188(1), 217–233.
https://doi.org/10.1016/S0045-7825(99)00149-8

Davies, R. M. 1956. Stress waves in solids. Br. J. Appl. Phys.7(6), 203–209.
https://doi.org/10.1088/0508-3443/7/6/302

Dokainish, M. A. and Subbaraj, K. 1989. A survey of direct time-integration methods in computational structural dynamics – I. Explicit methods. Comput. Struct.32(6), 1371–1386.
https://doi.org/10.1016/0045-7949(89)90314-3

Engelbrecht, J. 2015. Questions About Elastic Waves. Springer, Cham.
https://doi.org/10.1007/978-3-319-14791-8

Felippa, C. A., Guo, Q. and Park, K. C. 2015. Mass matrix templates: general description and 1D examples. Arch. Comput. Methods Eng.22, 1–65.
https://doi.org/10.1007/s11831-014-9108-x

Fried, I. 1972. Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J. Sound Vib.22(4), 407–418.
https://doi.org/10.1016/0022-460X(72)90452-X

Gershgorin, S. 1931. Uber die Abgrenzung der Eigenwerte einer Matrix (On the delimitation of the eigenvalues of a matrix). Izv. Akad. Nauk SSSR, Serija Matematika7(3), 749–754.

Goudreau, G. L. and Taylor, R. L. 1973. Evaluation of numerical integration methods in elastodynamics. Comput. Methods Appl. Mech. Eng.2(1), 69–97.
https://doi.org/10.1016/0045-7825(73)90023-6

Hallquist, O. J. 2006. LS-DYNA Theoretical Manual. LST, Livermore.

Hilber, H. M., Hughes, T. J. R. and Taylor, R. L. 1977. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn.5(3), 283–292.
https://doi.org/10.1002/eqe.4290050306

Hinton, E., Rock, T. and Zienkiewicz, O. C. 1976. A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn.4(3), 245–249.
https://doi.org/10.1002/eqe.4290040305

Holmes, N. and Belytschko, T. 1976. Postprocessing of finite element transient response calculations by digital filters. Comput. Struct.6(3), 211–216.
https://doi.org/10.1016/0045-7949(76)90032-8

Houbolt, J. C. 1950. A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci.17(9), 540–550.
https://doi.org/10.2514/8.1722

Hrennikoff, A. 1941. Solution of problems of elasticity by the framework method. J. Appl. Mech., 8(4), A169–A175.
https://doi.org/10.1115/1.4009129

Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publication, Mineola, NY.

Hughes, T. J. R. and Liu, W. K. 1978. Implicit-explicit finite elements in transient analysis: stability theory. J. Appl. Mech.45(2), 371–374.
https://doi.org/10.1115/1.3424304

Hughes, T. J. R., Reali, A. and Sangalli, G. 2008. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng.197(49–50), 4104–4124.
https://doi.org/10.1016/j.cma.2008.04.006

Hulbert, G. M. and Hughes, T. J. R. 1990. Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng.84(3), 327–348.
https://doi.org/10.1016/0045-7825(90)90082-W

Kolman, R., Plešek, J., Okrouhlík, M. and Gabriel, D. 2013. Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. Int. J. Numer. Methods Eng.96(1), 1–28.
https://doi.org/10.1002/nme.4539

Kolman, R., Plešek, J. and Okrouhlík, M. 2014. Complex wavenumber Fourier analysis of the B-spline based finite element method. Wave Motion51(2), 348–359.
https://doi.org/10.1016/j.wavemoti.2013.09.003

Kolman, R., Cho, S. S. and Park, K. C. 2016a. Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm. Int. J. Numer. Methods Eng.107(7), 543–579.
https://doi.org/10.1002/nme.5174

Kolman, R., Plešek, J., Červ, J., Okrouhlík, M. and Pařík, P. 2016b.Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. Int. J. Numer. Methods Eng.106(2), 113–128.
https://doi.org/10.1002/nme.5010

Kolman, R., Okrouhlík, M., Berezovski, A., Gabriel, D., Kopačka, J. and Plešek, J. 2017. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation. Appl. Math. Model.46, 382–395.
https://doi.org/10.1016/j.apm.2017.01.077

Kolsky, H. 1953. Stress Waves in Solids. Clarendon Press, Oxford.

Krieg, R. D. and Key, S. W. 1973. Transient shell response by numerical time integration. Int. J. Numer. Methods Eng.7(3), 273–286.
https://doi.org/10.1002/nme.1620070305

Kruisová, A., Kolman, R., Mračko, M. and Okrouhlík, M. 2019. Temporal-spatial dispersion analysis of finite element method in implicit time integration. In Engineering Mechanics 2019 (Zolotarev, I. and Radolf, V., eds), 25, 215–218.
https://doi.org/10.21495/71-0-215

Kulak, R. F. 1989. Critical time step estimation for three-dimensional explicit impact analysis. Progress report. Argonne National Laboratory, Argonne, Illinois. 

Kwok, W. Y., Moser, R. D. and Jiménez, J. 2001. A critical evaluation of the resolution properties of B-spline and compact finite difference methods. J. Comput. Phys.174(2), 510–551. 
https://doi.org/10.1006/jcph.2001.6919

Lew, A., Marsden, J. E., Ortiz, M. and West, M. 2004. Variational time integrators. Int. J. Numer. Methods Eng.60(1), 153–212. 
https://doi.org/10.1002/nme.958

Liu, J. B., Sharan, S. K. and Yao, L. 1994. Wave motion and its dispersive properties in a finite element model with distortional elements. Comput. Struct.52(2), 205–214. 
https://doi.org/10.1016/0045-7949(94)90273-9

Love, A. E. H. 1944. A Treatise on the Mathematical Theory of Elasticity. Dover Publications, New York.

Marfurt, K. J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. GEOPHYSICS49(5), 533–549.
https://doi.org/10.1190/1.1441689

Mullen, R. and Belytschko, T. 1982. Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng.18(1), 11–29.
https://doi.org/10.1002/nme.1620180103

Newmark, N. M. 1959. Method of computation for structural dynamics. J. Eng. Mech. Div.85(3), 67–94.
https://doi.org/10.1061/JMCEA3.0000098

Okrouhlík, M. 1994. Special issue on mechanics of contact impact. Appl. Mech. Rev.47(2), 34.
https://doi.org/10.1115/1.3111069

Okrouhlík, M. 2013. Dispersion and time integration schemes in finite-element analysis – a practical pictorial manual. Int. J. Mech. Eng. Educ.41(1), 44–71.
https://doi.org/10.7227/IJMEE.41.1.6

Okrouhlík, M. and Höschl, C. 1993. A contribution to the study of dispersive properties of one-dimensional Lagrangian and Hermitian elements. Comput. Struct.49(5), 779–795.
https://doi.org/10.1016/0045-7949(93)90026-A

Okrouhlík, M. and Pták, S. 2005. Assessment of experiment by finite element analysis: comparison, self-check and remedy. Strojnický časopis56(1), 18–39.

Park, K. C. 1977. Practical aspects of numerical time integration. Comput. Struct.7(3), 343–353.
https://doi.org/10.1016/0045-7949(77)90072-4

Park, K. C., Lim, S. J. and Huh, H. 2012. A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to one-dimensional problems. Int. J. Numer. Methods Eng.91(6), 622–643.
https://doi.org/10.1002/nme.4285

Schreyer, H. 1983. Dispersion of semidiscretized and fully discretized systems. In Computational Methods for Transient Analysis (Belytschko, T. and Hughes, T., eds). North-Holland Pub. Co., Amsterdam, New York, 267–299.

Seriani, G. 2004. Double-grid Chebyshev spectral elements for acoustic wave modeling. Wave Motion39(4), 351–360.
https://doi.org/10.1016/j.wavemoti.2003.12.008

Seriani, G. and Oliveira, S. P. 2008. Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion45(6), 729–744.
https://doi.org/10.1016/j.wavemoti.2007.11.007

Stade, E. 2005. Fourier Analysis. John Wiley and Sons, Hoboken, Chichester.
https://doi.org/10.1002/9781118165508

Stein, E., de Borst, R. and Hughes, T. J. R. 2017. Encyclopedia of Computational Mechanics. John Wiley and Sons, Chichester.
https://doi.org/10.1002/9781119176817

Subbaraj, K. and Dokainish, M. A. 1989. A survey of direct time-integration methods in computational structural dynamics – II. Implicit methods. Comput. Struct.32(6), 1387–1401.
https://doi.org/10.1016/0045-7949(89)90315-5

Thompson, L. L. and Pinsky, P. M. 1995. Complex wave-number Fourier-analysis of the p-version finite element method. Comput. Mech.13, 255–275.
https://doi.org/10.1007/BF00350228

Vichnevetsky, R. and Bowles, J. 1982. Fourier Analysis of Numerical Approximations of Hyperbolic Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA.
https://doi.org/10.1137/1.9781611970876

Zienkiewicz, O. C. 1971. The Finite Element Method in Engineering Science. McGraw-Hill, London, New York. 

Zukas, J. A. 1990. High Velocity Impact Dynamics. Wiley, New York.

Back to Issue