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Abstract. The dispersion behaviour of the finite element method, applied to the treatment of stress wave propagation tasks in an
elastic solid continuum, is reviewed and complemented with the authors’ contributions in the field, along with substantial details
of finite element technology. It is shown how finite element dispersion disqualifies to a certain extent the stress wave propagation
modelling and, as such, cannot be completely eradicated. The paper, however, reveals the ways how the dispersion effect (actually,
modelling errors) could be minimized. The effects of spatial and temporal dispersions of the finite element method are treated. 1D
and 2D linear and quadratic finite elements and their suitability are analysed for use with implicit and explicit integration methods.
Historical as well as new, up-to-date approaches are also reviewed. The paper closes with recommendations for values of mesh size
and timestep size, mass matrices and direct time integrations with respect to dispersion errors in finite element modelling of elastic
wave propagation problems in solids.
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1. INTRODUCTION

In general, dispersion is a phenomenon characterized by the fact that the velocity of a propagating wave
depends on its frequency. Dispersion behaviour is observed not only in several materials with microstruc-
tures, metamaterials, porous materials, thin-walled structures and dispersive fluids but also as the numerical
phenomenon of numerical methods in continuum mechanics.

In this paper, attention is given to the theory underpinning dispersion phenomena in computational
solid mechanics. We intend to describe dispersion effects when using the finite element method (FEM)
to model wave propagation tasks. A study of this subject allows us to understand and thereby minimize
the computational complications encountered when applying FEM to non-stationary dynamics tasks for
solid computational mechanics. Our approach to dispersion analysis also facilitates safe estimation of the
‘correct’ mesh size and timestep size. We provide safe choices for the model’s numerical parameters.

The standard computational approaches currently used in continuum mechanics are based on discretiza-
tion in space and time. In continuum mechanics, the finite element, finite volume, boundary element and
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other methods that involve explicit and implicit time stepping are typical examples of actual numerical ap-
proaches. In this paper, we will show that FEM is discrete in nature and that the results of wave propagation
tasks are substantially influenced by dispersion side effects.

FEM dispersion behaviour encompasses change of direction and wave speeds. It affects, in general, the
way in which waves propagate. Furthermore, the FEM mesh behaves as a frequency filter, meaning that
not all the frequencies can be transmitted. Wave propagation in lattice structures, mass-spring systems and
finite element (FE) discretized systems can be observed to be strongly analogous.

Even if embedded flaws cannot be fully eliminated, we will show how they can at least be minimized.
Though the subject of spatial and temporal dispersion in discretized solid continuum mechanics might seem
academic and theoretical, it nevertheless has practical ramifications for current users of commercial FE
packages. Knowledgeable users should be able to minimize dispersion side effects by skillfully choosing
appropriate element and mass matrix types, mesh densities and time integration methods with the correct
timestep size, etc. For that reason, the dispersive behaviour of the numerical model should be analysed
and the basic numerical parameters suggested so that numerical modelling using FEM can be sufficiently
accurate. From the beginning of its history, with Alexander Hrennikoff (1941) and Richard Courant (1943),
many authors have studied the finite element method and published their results as they relate to the many
effects and variants of FEM and their relation to dispersive properties. In the following text, we mention
several works related to this subject. The results we present on the dispersive properties of FEM are based
on systematic works of the numerical group from the Institute of Thermomechanics, Czech Academy of
Sciences.

Chin (1975) formerly presented a mathematical framework for dispersion analysis of FEM, based on
solving hyperbolic partial differential equations (PDEs). He observed the Gibb’s phenomenon in the FEM
solution. Subsequently, others used the Fourier method (sometimes called the Von Neumann method) as the
dispersion analysis tool. An efficient approach to the complex wave numbers Fourier analysis of FEM was
later introduced by Thompson and Pinsky (1995).

Krieg and Key (1973) studied the one-dimensional constant strain elements employed in the numeri-
cal elucidation of the one-dimensional Helmholtz equation. They discovered a relationship between mass
matrix type and temporal discretization. Belytschko and Mullen (1978) extended this dispersion analysis
to higher-order (quadratic) one-dimensional elements. It was shown that a so-called optical branch existed
in the spectrum. This notion referred to the original text of Brillouin (1953), in which the lowest charac-
teristics were called the acoustic branches and the higher ones, the optical branches. In that well-known
study, the dispersion analysis revealed the ‘stopping’ bands in the frequency spectrum of biquadratic ele-
ments whose corresponding solutions in the frequency range decayed exponentially due to the attenuation
effect of band-gap structures. Along the sidelines, one-dimensional higher-order Langrangian and Hermi-
tian elements were studied by Okrouhlı́k and Höschl (1993). The following types of shape functions were
considered: Legendre polynomials (hp-version of FEM) and hierarchic Fourier functions (Thompson and
Pinsky 1995), Chebyshev polynomials (Dauksher and Emery 1997, 2000; Seriani 2004; Seriani and Oliveira
2008), B-splines (Vichnevetsky and Bowles 1982; Kwok et al. 2001) or NURBS (non-uniform rational B-
splines) (Cottrell et al. 2006; Hughes et al. 2008). The effects of non-homogeneities and parametrization of
B-spline shape functions on dispersion and attenuation behaviour were studied by Kolman et al. (2014) and
are presented here.

Holmes and Belytschko (1976) showed numerically that an abrupt change of mesh size produced interior
reflections, contributing to the propagation of spurious waves. Their magnitude was analytically studied by
Bažant and Celep (1982). The same authors subsequently proved in the work led by Celep and Bažant
(1982) that mesh grading (i.e. the insertion of a transition domain) did not provide much assistance as it
could not absorb the spurious modes. Mullen and Belytschko (1982) extended the dispersion analysis to two-
dimensional wave equations using bilinear elements, where the effects of mesh layout, mass approximation
and under-integration were examined. The dispersion properties of triangular, rectangular and square finite
elements for two-dimensional domains have been determined and analysed by Brepta and Okrouhlı́k (1984,
1986). Abboud and Pinsky (1992) carried out dispersion analysis of the three-dimensional second-order
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scalar wave equation (the three-dimensional Helmholtz equation). The analysis was performed for trilinear
rectangular 8-node elements, for triquadratic rectangular 27-node elements and for serendipity rectangular
20-node elements with the additional investigation of mass approximation. Liu et al. (1994) studied the
effect of distortion of linear elements. In Christon (1999), the influence of the mass matrix approximation
on dispersion was outlined. Brepta et al. (1996) and Červ et al. (1996) used FEM to investigate the dis-
persion of harmonic Raleigh waves propagating along a straight boundary formed by a thin, elastic solid.

Other discoveries in this field included the Newmark and central difference methods, the former enabling
a full (combined temporal and spatial) dispersion analysis and the latter considering both consistent and
lumped mass matrices. It was additionally shown that the dispersion relations for time integration numerical
schemes were influenced by the magnitude of the timestep. Based on this analysis, the Newmark method
was recognised as the best match for a consistent mass matrix, while the central difference method was a
suitable counterpart for mass lumping procedures. For different time schemes, Marfurt (1984) examined the
accuracy of the finite difference method (FDM) and FEM when applied to scalar and elastic wave equations.
Schreyer (1983) contributed to the application of dispersion analysis to fully discretized systems.

The wave component-decomposition method with pull-back interpolation for the elimination of numer-
ical dispersion has been presented in Cho et al. (2013, 2019). In this method, each type of wave component
is integrated with different timestep sizes for longitudinal and shear waves of different wave speeds (see
also Kolman et al. 2016a). Here, each type of wave component is integrated with different timestep sizes
accounting for the different wave speeds for longitudinal and shear waves.

Our present contribution is to devote our attention to the dispersion behaviour of classical finite elements
and the effect of temporal-spatial discretization and mass matrix type. We do this in the format of a review
paper.

2. GOVERNING EQUATIONS OF WAVE PROPAGATION IN ELASTIC SOLIDS

The subject of linear elastic wave propagation in solids is based on assumptions of linear continuum me-
chanics, i.e. engineering stress, small strains and small displacements, linear relation between strains and
derivatives of displacements and the linear relation between stresses and strains (see Love 1944; Kolsky
1953; Davies 1956; Brillouin 1953; Zukas 1990). The quantities we are dealing with are the engineering
stress and the infinitesimal Cauchy strain (also called the engineering strain).

We assume a body occupying the bounded domain W ⇢ R3 with the boundary ∂W. The governing
equations – the balance of linear momentum at the material particle level – consist of the equations of
motion, relating the internal and inertia effects, and neglected volume forces, i.e. yields to

∂s ji

∂x j
= r ∂ 2ui

∂ t2 on W (1)

of the Cauchy kinematic equations, describing the relation between the engineering strain and the first
derivative of displacements, i.e.

ei j =
1
2

✓
∂ui

∂x j
+

∂u j

∂xi

◆
(2)

and, finally, of the linear relation between the engineering stress and engineering strain, represented by
Hooke’s law, i.e.

si j =Ci jklekl. (3)

In the governing equations, Eqs (1) to (3), the quantity si j stands for the engineering stress components, r
is the density, ei j stands for the Cauchy strain components, the components ui represent the displacement
vector u(x, t), the components of the fourth-order tensor of elasticity Ci jkl contain the elastic moduli and,
finally, xi and t are the spatial coordinate and time, respectively. Of course, the PDE system should be
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supplemented with the Dirichlet and Neumann boundary conditions on the boundary ∂W as well as the
initial conditions of the given positions and velocities at the initial time of interest.

In the text of this paper, the attributes ‘engineering’ and/or ‘infinitesimal’ will not be emphasized fur-
ther, as in Achenbach (1973). We also assume an unbounded domain of interest W = R3 of isotropic and
homogeneous media for dispersion analysis of FEM in wave propagation.

2.1. Plane wave propagation and definition of basic quantities in wave propagation

For the dispersion analysis, we assume a special case of motion. One may consider a plane harmonic
solution to Eq. (1) for an unbounded domain as in Brillouin (1953) and Achenbach (1973):

u(x, t) = Uexp[i (kx±wt)], (4)

where U = (Ux,Uy,Uz) is the amplitude vector, i =
p
�1 is the imaginary unit, k = (kx,ky,kz) is the wave

vector and w is the angular velocity. The polarization vector U for the longitudinal wave is satisfying the
condition U k k and U ? k for the transversal wave. For a given wave length l , the wave number k = |k|
may be computed from

k =
2p
l

. (5)

The vector of phase velocity c is related to angular velocity w and k by

c =
✓

w
kx
,

w
ky
,

w
kz

◆
(6)

with the amplitude c = |c|. The vector of group velocity cg is defined by Achenbach (1973) as

cg =
dw
dk

=

✓
∂w
∂kx

,
∂w
∂ky

,
∂w
∂kz

◆
(7)

with the amplitude cg = |cg|. The period of harmonic motion at the point is defined as T = 2p/w .
In non-dispersive systems, the dispersion relationship w = f (k) is prescribed by the linear function

w = ck and then cg = c. Thus, in the absence of dispersion, the group velocity equals the phase velocity,
and c and cg are constants. This medium is also isotropic – the phase and group velocities are independent
of the direction of wave propagation. In a dispersive medium, the dispersion relationship w = f (k) is not
a linear function, and the group velocity cg should be associated with a different direction than the wave
vector k.

2.2. Wave speed in 1D

In 1D space, the propagating elastic wave, in terms of displacements, is described by the so-called 1D wave
equation in the form

∂ 2u
∂ t2 = c2

0
∂ 2u
∂x2 on R, (8)

where u is the longitudinal displacement, c0 =
p

E/r is the speed of propagation, x and t are the longitudinal
displacement and time, respectively. The solution of Eq. (8), the distribution of longitudinal displacements
in time and space, could be assumed in the form

u(x, t) = f (x± c0t). (9)
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The distribution of stress and strain components is subsequently computed using Eqs (2) and (3). It should
be emphasized that in the linear theory of elasticity, when we talk about stress waves, the strain and stress
waves are linear combinations of the displacement distribution. Furthermore, the histories of velocity and
acceleration are evaluated by differentiating the displacement distribution with respect to time.

The term f , appearing in Eq. (9), is an arbitrary function satisfying certain continuity conditions (see
Brillouin 1953). The resulting solution is independent of the frequency of the propagating wave. In other
words, in a 1D solid continuum, the stress waves of all frequencies propagate with the same speed, i.e.
c0. So, a wave package, generally composed of the whole spectrum of frequencies, propagates in time
and space without any distortion. In this respect, the 1D solid continuum is defined as the dispersionless
medium, meaning that all the harmonic waves, regardless of their frequencies, propagate with the same
speed. In other words, this model is dispersionless.

In this paper, we focus only on wave propagation in elastic media. In one-dimensional media described
by the linear wave equation, the solution does not exhibit dispersion behaviour. However, there are many
models and model corrections in 1D wave propagation that can describe the dispersion wave propagation as
elastic wave propagation in a long cylinder with radial displacement correction, dispersion waves in nerves
or soliton wave propagation. For more details, see the book by Engelbrecht (2015).

2.3. Wave speeds in 2D – plane stress case

When considering the plane state of stress and eliminating the stress variables from Eqs (1) to (3), and
using scalar notation with displacements u,v defined in the directions x,y, we get the so-called Lamé’s wave
equations of motion for the isotropic and homogeneous media (Love 1944). They have the form on R2:

r ∂ 2u
∂ t2 =

E
1�µ2


∂ 2u
∂x2 +µ ∂ 2v

∂x∂y

�
+G


∂ 2u
∂y2 +

∂ 2v
∂x∂y

�
, (10)

r ∂ 2v
∂ t2 =

E
1�µ2


∂ 2v
∂y2 +µ ∂ 2u

∂x∂y

�
+G


∂ 2v
∂x2 +

∂ 2u
∂x∂y

�
, (11)

where µ is the Poisson’s ratio and E,G are the Young’s and shear moduli, respectively. In this case, there
are two types of wave propagation through the unbounded isotropic and homogeneous domain. The wave
pattern, in terms of displacement components, i.e. the solution of Eqs (10) and (11), can be described by
two arbitrary functions f and h (see Brillouin 1953). Only the argument with the minus sign is considered
since the functions with the plus sign argument represent identical waves travelling in opposite directions:

u = f (x� c3t), v = h(y� c3t). (12)

This wave is called longitudinal (also P, primary, dilatational, irrotational or extensional) and propa-
gates with the speed

c3 =

s
E

r(1�µ2)
. (13)

The wave pattern, in terms of displacement components, i.e. the solution Eq. (11), can be described by
arbitrary functions

u = F(y� c2t), v = H(x� c2t). (14)
This wave is called transversal (also S, shear, rotational, equivolumetrical) and propagates with the
speed

c2 =

s
G
r
. (15)

In a 2D continuum, the longitudinal and transversal waves propagate at different speeds. In an unbound
domain, the waves are not coupled and are independent of their frequencies. Geometrically, the displacement
vector of the longitudinal wave has the direction of the wave propagation direction. The displacement of the
shear wave is perpendicular to the direction of wave propagation (see Kolsky 1953).
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2.4. Wave speeds in 2D – plane strain case

The equations of motion are the same as before, but under plane strain conditions, the speed of longitudinal
waves is c1 =

q
E
r

1�µ
(1+µ)(1�2µ) , while the speed of transversal waves is the same as for the plane state of

stress, i.e. c2 =
q

G
r . For more details, see Love (1944). So, the unbound 2D continuum, regardless of

the plane stress or plain strain conditions, is a dispersionless medium.

2.5. Wave speeds in 3D

For the three-dimensional task of elastodynamics with the isotropic and homogeneous media, the governing
equations in the operator notation have the form

(L+G)grad divu+G4u = r ∂ 2u
∂ t2 on R3, (16)

where 4 marks the Laplace operator and L and G are the Lamé’s constants. The Lamé’s constants L, G
may be related to the engineering constants E, µ as

L =
µE

(1+µ)(1�2µ)
, G =

E
2(1+µ)

. (17)

As in the 2D space, in a 3D unbound continuum, the longitudinal and transversal waves are not coupled
and propagate at different speeds. The speeds are c1 and c2, respectively. In an unbound medium, the waves
are independent of their frequency as well. So, the unbound 3D continuum is also the dispersionless
medium (see Love 1944). The geometry of wave propagation modes is the same as for the 2D problem.
However, we have two shear waves that are perpendicular amplitude vectors to each other.

2.6. Examples of values of wave speeds for different spatial statuses

As we said, in a 1D continuum, there is only a single speed of wave propagation, i.e. c0 =
p

E/r . Due
to the existence of normal and shear stresses in 2D and 3D continua, there are two kinds of stress waves
that could propagate in an unbound medium in a non-dispersive way (see Kolsky 1953). These are lon-
gitudinal (P, primary) and transversal (S, shear) waves – their speeds are different. The speed formulas
and values (in m/s) for a typical steel material with the Young modulus (E = 2.1⇥ 1011 Pa, density r =

7600 kg/m3, Poisson’s ratio µ = 0.3) are as follows:

1D wave, slender rod:
c0 =

p
E/r = 5189 [m/s];

P wave for 2D plane strain and for 3D problems:
c1 =

p
(2G+L)/r = 6020 [m/s],

where L =
µE

(1+µ)(1�2µ) , G =
E

2(1+µ) ;
P wave for 2D plane stress problem:
c3 =

p
E/(r(1�µ2)) = 5439 [m/s];

S wave, shear, both for 2D and 3D problems:
c2 =

p
G/r = 3218 [m/s].

(18)

The following text will be devoted to the numerical modelling of wave propagation for elastic waves
and to numerical errors arising from numerical solutions obtained by the finite element method.
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3. FINITE ELEMENT METHOD FOR ELASTIC WAVE PROPAGATION

The finite element treatment of transient tasks in elastodynamics is based on equations of motion that have
the form of second-order linear ordinary differential equations with constant coefficients. When no damp-
ing is considered, the equations of motion of the whole body (structure) – for the displacement-based FE
formulation – in the matrix form have the form

Mq̈+Kq = F(t), (19)

where M is the global mass matrix, K denotes the global stiffness matrix, column arrays q and q̈ contain
the nodal displacements and accelerations, respectively, while in the column array F(t), the time histories
of external nodal forces are assembled. The global matrices M,K are assembled of local element mass and
stiffness matrices that are expressed by

Me =

Z

Ve

rHTHdVe (20)

and
Ke =

Z

Ve

BTCBdVe, (21)

where r is the density, the matrix H stores the displacement interpolation functions (shape functions) and
B is the strain-displacement matrix. The quadrature formulas defining the local mass and stiffness matrices
are carried out within the element’s undeformed volume Ve. In a plane strain problem of isotropic media,
the elastic matrix C takes the form

C =
E

(1+µ)(1�2µ)

2

4
1�µ µ 0

µ 1�µ 0
0 0 1�2µ

2

3

5, (22)

where E and µ are the Young’s modulus and the Poisson’s ratio, respectively. Usually, the standard full
Gauss quadrature rule is employed for the evaluation of integrals (20), (21). The details of FE technology
can be found in Hughes (2000) or Bathe (1996).

Commercial finite element packages offer a reduced quadrature process as well. This process, also
called ‘under-integration’, increases efficiency and significantly reduces computational costs in nonlinear
problems in wave propagation, as the data is stored in a limited number of integration points. One-point
integration is commonly used for 1D, 2D and 3D linear finite element discretization in explicit time integra-
tion (Belytschko and Hughes 1983). In Mullen and Belytschko (1982), the dispersion of 2D finite elements
with one-point integration of the stiffness matrix is studied for linear wave propagation, and it is shown that
dispersion errors increase with this numerical approach. The under-integration of the mass matrix is not a
common approach due to the loss of rank of the mass matrix and the influence on the rigid body modes
(Felippa et al. 2015), and only the full integration is used for the mass matrix in real implementation. In
elastic wave propagation, the full integration is used because the stiffness matrix is evaluated only once,
making it a good candidate for minimizing dispersion errors. Selective and reduced integration are used for
structural elements in statics to eliminate shear and volumetric locking.

Evaluating the equations of motion, prescribed by Eq. (19), by time marching operators, provides the
transient response of a loaded body to generic loading, while applying the generalized eigenvalue problem
to Eq. (19) with F(t) = 0 gives the steady-state response of a body to harmonic excitations. In this paper,
both approaches are used to study the temporal and spatial dispersion effects.

The element mass matrix, as well as the global mass matrix, is called consistent when derived ‘consis-
tently’ using Eq. (20). Consistent mass matrices are recommended to be used with implicit time integration
operators.
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Diagonal (lumped) mass matrices minimize the computer storage requirements; furthermore, the inver-
sion is trivial. Diagonal mass matrices are recommended to be used with explicit time integration operators
(see Bathe 1996). To create a diagonal mass matrix, the so-called row-sum method is sometimes used. Such
a process is suitable for linear elements only (see Hughes 2000; Belytschko et al. 2000). Unfortunately,
the row-sum method, applied to mass matrices of higher-order elements, produces certain negative diagonal
elements in the lumped matrices; furthermore, the lumped mass matrix does not satisfy positive definite-
ness. Note that the total mass of the lumped mass is fully conserved. That is why the diagonal mass scaling
method, the so-called HRZ (Hinton–Rock–Zienkiewicz) method is preferred for the higher-order FEM and
structural elements, such as beams, plates and shells (see Hinton et al. 1976). To conserve the overall mass
and make a lump mass matrix positive definite, the diagonal elements should be properly scaled (see Felippa
et al. 2015).

4. TIME INTEGRATION OF EQUATIONS DESCRIBING WAVE PROPAGATION IN
ELASTIC SOLIDS

Stress wave propagation tasks in the elastic continuum are described by partial differential equations. For the
prescribed boundary and initial conditions, the equations are difficult to solve analytically. The results are
available for uncomplicated geometries and simple loading effects only. Solution procedures are often based
on applying Fourier and Laplace transforms to the equations of motion, followed by inverse transforms,
which leads to the outcome in the form of infinite series of integrals with infinity as their limit (Červ et al.
2016).

Using the finite element method in dynamics, discretization in space has to be complemented by dis-
cretization in time when treating wave propagation tasks since time variable and, consequently, inertia
effects have to be considered. By time discretization, partial differential equations of motion – typical for
the solid continuum – are replaced by ordinary differential equations.

Their numerical solutions can be obtained by mode superposition and direct integration methods (see
Bathe 1996). Here, the latter methods will be treated.

We will focus our attention on the numerical approaches specific to the time discretization of ordinary
differential equations that describe transient wave propagation tasks in solids, modelled using the displace-
ment version of the finite element method.

Elastic waves, modelled by finite element methods, are described by equations of motion in the form of
a system of second-order ordinary linear differential equations

Mq̈+Dq̇+Kq = F(t), (23)

where M,D,K are the global mass, viscous damping and stiffness matrices, respectively; q̈, q̇,q are column
arrays of kinematic variables, i.e. generalized accelerations, velocities and displacements at nodes; and
F(t) is the array of external nodal loading forces expressed as functions of time. An example of modelling
damping effects is the classical Rayleigh damping matrix (see Chopra 2001), as

D = µ1M+µ2K, (24)

where µ1 and µ2 are the Rayleigh damping coefficients, respectively, often determined by the vibration
experiments of structures. Time integration methods give histories of kinematic variables, and, subsequently,
using the infinitesimal Cauchy relations, the strain quantities are evaluated. Finally, the stress quantities are
obtained using linear constitutive relations (see Bathe 1996; Park 1977; Park et al. 2012; Zienkiewicz 1971).

The aim of computational procedures used for the solution of transient problems is to satisfy the equa-
tions of motion, not continually but rather at discrete time intervals. It is assumed that all kinematic quanti-
ties for times 0,Dt,2Dt,3Dt . . . t are known, while those for times t +Dt . . . tmax are to be found. The quantity
Dt, called the timestep size, does not necessarily need to be constant throughout the integration process.
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Time integration methods can be broadly characterized as explicit (see Dokainish and Subbaraj 1989),
or implicit (see Subbaraj and Dokainish 1989).

4.1. Explicit time integration algorithms

Explicit formulations stem from equations of motion written at time t. This is indicated by an upper right
index. As we said, the discretized equations of motion in FEM have the form at each time t as

Mt q̈t
+Dt q̇t

+Ktqt
= F(t). (25)

If the transient problem is linear, and we assume elastic wave propagation, then the mass, damping and
stiffness matrices do not change in time. A classical representative of the explicit time integration algo-
rithm is the central difference scheme. Substituting the central difference approximations for velocities and
accelerations

q̇t
=
�
qt+Dt �qt�Dt�/(2Dt), (26)

q̈t
=
�
qt+Dt �2qt

+qt�Dt�/(Dt)2 (27)

into equations of motion (25) gives us a system of algebraic equations that we can solve for the displacements
at time t +Dt, namely

Meffqt+Dt
= Feff, (28)

where the so-called effective quantities are

Meff
= M/(Dt)2

+D/(2Dt) (29)

and
Feff

= Ft �
�
K�2M/(Dt)2�qt �

�
M/Dt2 �D/(2Dt)

�
qt�Dt . (30)

The last term in the above expression for effective force indicates that the process is not self starting.
For more details, see Bathe (1996). The computational process can be written in the form of unknown
accelerations (A-form) (see Hughes 2000) against the displacement form (D-form).

The process is, however, explicit only if the mass matrix is made diagonal by a suitable lumping process
(Zienkiewicz 1971). The damping matrix needs to be diagonal as well. The inversion of Meff is then trivial
and, instead of solving the system of algebraic equations, we simply have the set of individual equations for
each degree of freedom, and no matrix solver is actually needed. This makes the system of equations easy
to parallelize.

A comprehensive survey of explicit time integration methods for dynamic analysis of linear and nonlin-
ear structures can be found in Dokainish and Subbaraj (1989). A thorough analysis of transient algorithms
together with a rich source of references was presented in the book by Belytschko and Mullen (1978).
Stability analyses of explicit and implicit schemes has been studied for a long time. Park (1977) has inves-
tigated stability limits and stability regions for both linear and non-linear systems. A comprehensive survey
showing a variety of approaches is presented in the book by Hughes and Liu (1978).

The explicit methods are only conditionally stable; the stability limit being approximately equal to the
time for an elastic wave to traverse the smallest element. The critical timestep securing the stability of the
central difference method for a linear undamped system is Dtcrit = 2/wmax (see Lew et al. 2004), wmax
being the maximum eigenfrequency, related to the maximum eigenvalue l max of the generalized eigenvalue
problem Kq = lMq by w2

= l . Practical calculations show that the result is also applicable to nonlinear
cases since each timestep in the nonlinear response can roughly be considered as a linear increment of the
whole solution.

Often, the critical timestep size Dtcrit is related to the characteristic length of the finite element Hchar and
the corresponding maximum elastic wave speed in the media cmax as Dt  Dtcrit = a Hchar

cmax , the parameter a
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depending on the finite element type, order of shape function, numerical integration, mass matrix, etc. For
example, for a 1D case, the linear bar element with full integration and lumped mass matrix is given an a
parameter of a = 1. We can also define the Courant number – dimensionless timestep size – C =

Dtcmax
Hchar

.
Efficient and stable timestep estimation is to be included in the numerical process for modelling wave

propagation in solids (see Park 1977). The estimated value of Dt should be close to the critical value of the
timestep size. In real FE explicit computations and commercial software, automated timestep estimation
is employed as the power iteration method (Benson 1998) and as the Gershgorin circle-based timestep
estimation (Kulak 1989).

The power iteration method is based on an iterative process for computing the maximum eigenvalue
l max of the generalized eigenvalue problem lyn+1 = Ayn with A = M�1K as the following procedure:

1. Initialize eigenvector y0, e.g. random in range [�1,1], i = 0
2. i = i+1
3. Compute yi+1 = Kyi
4. Compute ci+1 = M–1yi+1
5. Compute the estimate of eigenvalue l max

i+1 = kci+1k
6. Update eigenvector yi+1 = ci+1/l max

i+1

7. If |l max
i+1 /l max

i �1|> e or i < N
iter , go to STEP 2

8. l max
= l max

i+1
9. wmax =

p
l max

10. Dtcrit = 2/wmax
Practically, the process converges in several (e.g. 10) iterations. This estimation should include the effect of
boundary conditions and composite meshes consisting of different finite element types. Practically, the final
timestep for computation is taken to be Dt = 0.9Dtcrit (see Hallquist 2006).

The other estimation of the stable timestep size is based on the Gershgorin circle theorem (Gershgorin
1931), where by applying the linear eigenvalue problem with the lumped mass matrix one can estimate the
stable timestep size (Kulak 1989) as

(wmax)
2  max

i

n
Â
j=1

| Ki j |

Mii
, Dtcrit =

2
wmax

. (31)

One can also use the Fried’s theorem, which takes into account the element eigenvalue inequality wmax 
maxi we

i over all finite elements (Fried 1972).
Explicit time integration methods are employed mostly for the solution of nonlinear problems since im-

plementing complex physical phenomena and constitutive equations is then relatively easy. The global mass
matrix need not be assembled, and thus no matrix solver is required, which saves computer storage and time.
The main disadvantage is the conditional stability, which clearly manifests itself in linear problems where
the solution quickly blows up if the timestep is larger than the critical one. In nonlinear problems, results
calculated with a ‘wrong’ step could contain a significant error and may not show immediate instability.

4.2. Implicit time integration algorithms

Implicit formulations stem from equations of motion written at time t+Dt; unknown quantities are implicitly
embedded in the formulation, and the system of algebraic equations must be solved to ‘free’ them. In
structural dynamic problems, implicit integration schemes give acceptable solutions with timesteps usually
one or two orders of magnitude larger than the stability limit of explicit methods.

Perhaps the most frequently used implicit methods belong to the so-called Newmark family (Newmark
1959). The Newmark integration scheme is based upon an extension of the linear acceleration method in
which it is assumed that the accelerations vary linearly within a timestep.
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For linear transient tasks treated by the finite element method, the classical Newmark method consists
of the following equations (see Newmark 1959):

Mq̈t+Dt
+Dq̇t+Dt

+Kqt+Dt
= Ft+Dt , (32)

qt+Dt
= qt

+Dtq̇t
+

1
2
(Dt)2 �

(1�2b )q̈t
+2b q̈t+Dt� , (33)

q̇t+Dt
= q̇t

+Dt
�
(1� g)q̈t

+2gq̈t+Dt� . (34)

Equations (32) to (34) suffice for the determination of three unknowns, i.e. qt+Dt , q̇t+Dt and q̈t+Dt . The pa-
rameters b and g determine the stability and accuracy of the algorithm and were initially proposed by New-
mark as b = 1/4 and g = 1/2, thus securing the unconditional stability of the method, which means that the
solution, for any set of initial conditions, does not grow without bounds regardless of the timestep. However,
unconditional stability itself does not guarantee accurate and physically sound results (see Belytschko and
Hughes 1983; Park 1977; Subbaraj and Dokainish 1989; Goudreau and Taylor 1973).

With the values of b = 1/4,g = 1/2, the method is sometimes referred to as the constant-average accel-
eration version of the Newmark method and is widely used for structural dynamic problems. In this case,
the method conserves energy. For linear problems, the mass, damping and stiffness matrices are constant,
and the method leads to the repeated solution of the system of linear algebraic equations at each timestep,
giving the displacements at time t +Dt by solving the system

Keffqt+Dt
= Feff, (35)

where the so-called effective quantities are

Keff
= K+a1M+a1dD, (36)

Feff
= Ft+Dt

+M(a1qt
+a2q̇t

+a3q̈t
)+D(a1dqt

+a2d q̇t
+a3dq̈t

). (37)

New accelerations and velocities are

q̈t+Dt
= a1(qt+Dt �qt

)�a2q̇t �a3q̈t (38)

and
q̇t+Dt

= qt
+a4q̈t

+a5q̈t+Dt . (39)

The constants are given as follows:

a1 = 1/
�
b (Dt)2� , a2 = 1/(b (Dt)) , a3 = 1/(2b )�1,

a4 = (1� g)(Dt), a5 = g(Dt),
a1d = g/(b (Dt)), a2d = g/b �1, a3d =

1
2(Dt)

⇣
g
b �2

⌘
.

(40)

An efficient implementation of the Newmark method for linear problems requires that direct methods (e.g.
the Gauss elimination) are used for the solution of the system of algebraic equations. The effective stiffness
matrix is positive definite, which allows one to proceed without a search for the maximum pivot. Further-
more, the effective stiffness matrix does not change in time and thus can be factorized only once, before the
actual time marching. Thus, at each step, only factorization of the right-hand side and backward substitution
is carried out. This makes the Newmark method very efficient; treating a problem with a consistent mass
matrix requires even fewer floating point operations than using the central difference method.

The Newmark method has many practically applicable features. If g � 1
2 and b =

1
4
� 1

2 + g
�2, the method

is still unconditionally stable, but a positive algorithmic damping is introduced into the process. With
g < 1

2 , a negative damping is introduced, which eventually leads to an unbounded response. By varying the



290 Proceedings of the Estonian Academy of Sciences, 2024, 73, 3, 279–316

values of parameters b and g , the Newmark scheme describes a whole series of time integration methods –
sometimes called the Newmark family.

If, for example, b = 1/12 and g = 1/2 , we get a well-known Fox–Goodwin formula, which is implicit
and conditionally stable, else if g = 1/2 and b = 0 , then the Newmark method becomes a central difference
method, which is conditionally stable and explicit (if mass and damping matrices are diagonal).

The algorithmic damping, introduced into the Newmark method by setting the parameter g > 1/2 and
calculating the other parameter as b =

1
4
�1

2 + g
�2 , is frequently used in practical computations since it filters

out the high-frequency components of the mechanical system response. This damping is generally viewed
as desirable. Since the high-frequency components are very often mere artifacts of the finite element mod-
elling, they are consequences of the discrete nature of the finite element model and its dispersive properties
(Goudreau and Taylor 1973).

It is known that algorithmic damping adversely influences the lower modes in the solution as well. To
compensate for the negative influence of algorithmic damping on the lower modes of behaviour, a modi-
fied Newmark method is used to ensure adequate dissipation in the higher modes, whilst simultaneously
guaranteeing that the lower modes are not affected too strongly (see Stein et al. 2017; Hilber et al. 1977).
Nowadays, a commonly used time integration method with controlled dissipation effects is the generalized-
a method (see Chung and Hulbert 1993).

Notes

For conditionally stable methods (e.g. the method of central differences), the timestep must be Dt  Dtcrit.
If it is not, these methods explode numerically.

For unconditionally stable methods (e.g. the constant-average acceleration version of the Newmark
method), any timestep could theoretically be employed. But if Dt � Dtcrit, the integration method marches
too fast in time to see the minute details of the vibration process, and, consequently, the high-frequency
components of the propagating signal are not registered – they are filtered out of the numerical integration.

5. DISPERSION

5.1. History of dispersion

The history of dispersion goes back to our forefathers, such as Newton, Fourier, Brillouin, Kolsky, Brepta,
Bažant, etc. (Brillouin 1953; Kolsky 1953; Brepta and Okrouhlı́k 1986; Stade 2005; Bažant and Celep
1982). In this respect, a one-dimensional homogeneous lattice, consisting of mass particles connected by
massless springs, depicted in Fig. 1, should be recalled as the simplest example of dispersive media.

Isaac Newton (1642–1726) employed the homogeneous lattice model (all particles have the same mass
and all the spring stiffnesses are identical) for the estimation of the speed of sound in the air, using the
formula

c = d

r
k
m

=

s
kd
r

=

s
E
r
, (41)

where d is the distance between particles, k is the spring stiffness, m is the mass of the particle, and E is the
Young modulus.

For the E variable he used the isothermal bulk modulus of air, which gave him a speed value smaller than
that obtained experimentally. Later, in 1822, Laplace used the adiabatic bulk modulus, obtaining results in
close agreement with reality.

Johann Bernoulli (1667–1748) in Basel and his son Daniel Bernoulli (1700–1782) in St. Petersburg
showed independently that the lattice (see Fig. 1), composed of n mass particles, has n degrees of freedom
and, consequently, n independent eigenfrequencies and eigenvectors.
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A thin rod of a constant cross-section, considered as a 1D elastic continuum, is a counterpart of the
lattice. A thin rod, in contradistinction to the lattice, has an infinite number of degrees of freedom and
frequencies. With only a little generalization, one might say that the lattice is a mental forerunner of the
finite element method. The dispersion analysis presented in the paper is based on comparing the oscillatory
responses of continuous and discretized bodies to an applied harmonic excitation. Figure 5 presents the
dispersion relation between the frequency and the wave number for a lattice, as described in Brillouin
(1953), and for a classical 1D constant finite strain element. The one mass-spring homogeneous lattice
model and a thin bar modelled by a 1D constant finite strain element have the same dispersion relationship.
The details of dispersion analysis will be explained later.

It was Euler (1748) who proved that the laterally vibrating string is formally described by the same type
of partial differential equation as the longitudinally vibrating thin bar, i.e.

∂ 2u
∂ t2 = c2

0
∂ 2u
∂x2 . (42)

In a vibrating spring, the variable u stands for lateral displacement, while for a vibrating lattice it represents
longitudinal or axial displacements. Also, the definition of the constant c0 is different. He also proved that
the solution of the above equation (i.e. the distribution of displacements in space and time) could be assumed
in the form u(x, t) = f (x±c0t), where f is an arbitrary function satisfying certain continuity conditions (see
Kolsky 1953). Such a solution is independent of the frequency of the propagating wave. In other words, in
a 1D solid elastic continuum, the stress waves of all frequencies propagate at the same speed. So, a wave
package composed of the whole spectrum of frequencies propagates within a thin rod forever, without any
distortion. In this respect, the 1D solid continuum is considered to be a perfect dispersionless medium.

It is known that the dispersion side effects occurring due to discretization (actually, the flaws in the
context of continuum modelling) cannot be fully eliminated. In this paper, we will reveal how to minimize
them.

5.2. Types of dispersion

In solid continuum mechanics, we distinguish material, geometrical, spatial and temporal types of disper-
sion. Material dispersion is induced by the nonlinear elastic response and by the damping and micro-
structural properties of the medium through which the wave propagates. Geometrical dispersion occurs
when one changes the geometrical shapes of waveguides through which the waves propagate. Spatial dis-
cretization of the continuum is typical for numerical approaches based on the process in which the originally
continuum structure of the material is replaced by small finite parts – usually finite elements. Finally, tem-
poral discretization – typical for the numerical solution of transient tasks – stems from the fact that the
quantities resulting from the analytical solution of differential equations of motion, instead of being de-
scribed by continuous functions of time, are evaluated in discrete time intervals only. In this text, only the
spatial and temporal types of dispersion of FEM are discussed.

5.3. Spatial dispersion of FEM

Study of the spatial dispersion phenomena is based on assuming the harmonic wave, defined by its wave
number and wave length, propagating in a specified direction. After that, this prescribed motion in time and

m1

k1

m2

k2

m3

k3 kn−1

mn−1

kn

mn

Fig. 1. Mass particles connected by massless springs.
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space is inserted into the equations of motion of a characteristic stencil of the problem to solve. Finally,
the relationship between the angular velocity w , the wave number kh defined for a discrete model and the
direction of wave propagation q is found in a closed form as w = f (kh,q) or evaluated numerically. The
vector of the numerical phase speed ch is then computed via the relationship

ch
=

w
kh =

 
w
kh

x
,

w
kh

y
,

w
kh

z

!
, (43)

and the vector of the numerical group velocity cg is defined as

ch
g =

dw
dkh =

 
∂w
∂kh

x
,

∂w
∂kh

y
,

∂w
∂kh

z

!
. (44)

Note that the numerical wave speed ch, the numerical group speed ch
g and the wave number kh defined

for a discrete model are counterparts to the wave speed c, the group speed cg and the wave number k corre-
sponding to the analytical results of wave propagation in elastic solids.

5.3.1. Constant strain 1D finite element

The simplest rod/bar finite element with two degrees of freedom, identified by displacements q1,q2, depicted
in Fig. 2, is based on the assumption of linear displacement distribution within its length, which leads to a
constant distribution of strain within the element (see Bathe 1996).

The local mass and stiffness matrices for a constant strain element are

Me =
rAl0

6
M⇤

c , M⇤
c =


2 1
1 2

�
, (45)

Ke =
EA
l0

K⇤, K⇤
=


1 �1

�1 1

�
. (46)

The non-dimensional part of the consistent mass matrix M⇤
c is alternatively considered in its diagonal

form as
M⇤

d =


3 0
0 3

�
. (47)

Constants A and l0 are the cross-sectional area and length, while E and r are the Young’s modulus and
density, respectively.

A

q1 q2

l0

Fig. 2. Constant strain rod element.
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The idea on which the dispersion study of an FE model is based is to introduce a harmonic wave propa-
gation solution into a discrete system and observe what happens, and thus to determine the dispersion
relationships (see Brillouin 1953; Okrouhlı́k and Höschl 1993). Imagine an infinitely long rod composed of
identical constant strain elements. Assembling the global mass and stiffness matrices out of the local ones,
we find that, in this case, the global mass and stiffness matrices M,K are of a tri-diagonal structure with a
repeated pattern. A typical equation for the consistent mass matrix formulation, written in terms of the j-th
node, is

q̈ j�1 +4q̈ j + q̈ j+1 �6w2
0 (q j�1 �2q j +q j+1) = 0, (48)

where
w0 = c0/l0. (49)

Similarly, for the diagonal mass matrix formulation, we get

q̈ j +w2
0 (q j�1 �2q j +q j+1) = 0. (50)

The dimensionless counterparts of wave length and wave number, related to the finite element length,
are

Lh
0 = l h/l0 . . . dimensionless wave length,

gh
= khl0 =

2p
Lh

0
. . . dimensionless wave number.

g⇤ = gh

2p
=

l0
l h . . . normalized dimensionless wave number.

The Lh
0 parameter determines how many element lengths, denoted by l0, would fit into the wave length of a

considered harmonic wave. In Fig. 3, we depict how the wave would look if L0 were given a value of 6.
The numerical phase velocity is defined by

ch
=

w
kh =

l h

T
[m/s].

The relative phase velocity, related to element length, is

wh
=

ch

l0
=

w
kh

1
l0

=
w
gh [1/s].

A one-dimensional harmonic wave propagating in ±x direction can be expressed in the form

u(x, t) =Cei(khx±wt);

for details, see Kolsky (1953). If x coordinate is discretized, i.e. x j = jl0, j being the node counter (see
Fig. 4), then

q j =Cei(khl0 j±wt)
=Cei(gh j±wt).

� = 6 l0

l0

⇤0 = 6

Fig. 3. Example of a wave with the dimensionless wave length L0 = l/l0 = 6.
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x

j�1 j+1

j

Fig. 4. Continuous and discretized quantities.

Considering the wave propagation with + sign only, we have

q j =Cei(gh j+wt)
=Ceigh

⇣
j+ w

gh t
⌘

=Ceigh
( j+wht). (51)

Expressing the previous relation for the indices j� 1, j and j+ 1, evaluating their second time derivatives
and substituting them into Eq. (48), we get (the details are in Okrouhlı́k 2013)

⇣
gh2

wh2
+6w2

0

⌘

| {z }
a

z2
+

⇣
4gh2

wh2 �12w2
0

⌘

| {z }
b

z+
⇣

gh2
wh2

+6w2
0

⌘

| {z }
a

= 0, (52)

a quadratic equation in terms of z = eigh . Introducing a,b as indicated above, we have az2
+ bz+ a = 0,

whose roots are z1,2 =
�b±

p
b2�4a2

2a .

Taking b2 � 4a2 < 0, i.e. w = ghwh < wc
l =

p
12w0, to get the expected imaginary (i.e. vibrating)

solution, and realizing that z = eigh
= cosgh

+ i singh, we obtain cosgh
= � b

2a and singh
=

p
4a2�b2

2a , and,
finally ⇣

6w2
0 + gh2wh2

⌘
cosgh

= 6w2
0 �2gh2wh2

. (53)

The angular velocities for the consistent mass matrix formulation (indicated by c and d indices) are then
evaluated:

w⇤
c =

wc

w0
=

whgh

w0
=

s
6(1� cosgh)

2+ cosgh gh < 0,p >, (54)

with the phase speed related to c0:

c⇤h
c =

ch
c

c0
=

1
gh

wc

w0
=

1
gh

s
6(1� cosgh)

2+ cosgh . (55)

Similarly, the dispersion relation for the diagonal mass matrix is obtained in the form

w⇤
d =

wd

w0
=

q
2(1� cosgh) gh < 0,p >, (56)

with the phase speed related to c0:

c⇤d =
ch

d
c0

=
1
gh

q
2(1� cosgh) gh < 0,p > . (57)

The frequency limit for the diagonal mass matrix is given as wd
l = 2w0.
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Fig. 5. Dispersion curves for a rod/bar assembled by 1D constant strain elements.

Figure 5 expresses the dispersion relation between the angular velocity ω∗ and the wave number γh for
a classical 1D constant strain element (see Okrouhlı́k and Höschl 1993). It is of interest that the dispersion
curve, plotted by the dashed line and denoted by ω∗

d , stands for the 1D constant strain element with a
diagonal mass matrix, while the solid line, denoted by ω∗

c , represents the dispersive behaviour of the constant
strain element with a consistent mass matrix. More details can be found in Okrouhlı́k (2013).

The range of γh variable is ⟨0,π⟩. If γh
l = π (l − limit value), then from γh

l = 2π
Λ0l

we get an important
limit value

Λ0l = 2. (58)

This is the minimum limit value to ensure an FE response of vibrating character, meaning that at least two
elements of the length l0 should fit into the wave length λ of the considered harmonics, i.e. λ h

l =Λ0l l0 = 2l0.
The wave propagation mode corresponds to a zig-zag tooth mode.

For larger values of ω than ωl , the solution loses its vibrating character, and the attenuate wave mode
is activated, with the corresponding wave length given by Λ0l = 2, meaning two FEs fit the wave length.
In this case, the waves are attenuated with respect to space, and the intensity of attenuation depends on the
frequency of the propagating wave.

Figure 6 shows how the dimensionless phase velocity of a harmonic wave c∗h depends on the Λ0 pa-
rameter. With an increasing number of elements, both relations (for consistent and diagonal mass matrices)
approach the value ‘1’, representing the ideal non-dispersive state. There are two parallel lines showing
±1% levels with respect to a phase velocity of one. The figure shows that for the dispersion error not to
fall outside the ±1% limits, at least 13 element lengths should fit into the wave length of a harmonic wave
– regardless of the mass matrix formulation. This rule of thumb is often generalized for other types of ele-
ments. Bathe (1996) recommends 10 element lengths; Okrouhlı́k and Pták (2005) frequently use the value
5. Dispersion analyses for other types of FEs are discussed in subsequent parts of this paper.

The results, as analytically derived formulas (54) and (56) for the assumption of the wave solution, can
be compared with those acquired numerically by solving the generalized eigenvalue problem using global
stiffness and mass matrices. In our case, we have the eigenvalue problem in the form

(K−ω2M)q = 0. (59)

number γh ,Dimensionless wave 
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Fig. 6. Dimensionless phase velocity vs Λ0 parameter.

The mathematical proof of equivalence between dispersion analysis and eigenvalue analysis for the 1D
case has been published in the work of Hughes et al. (2008).

Figure 7 shows the results obtained analytically and numerically by the eigenvalue problem (59). The
generalized eigenvalue problem was solved for a rod modelled by 30 constant strain elements with con-
sistent (L1C) and diagonal (L1D) mass matrix formulations (L stands for the Lagrangian interpolation of
displacements, number 1 stands for the first order polynomial, and C and D indicate consistent and diagonal
mass matrix formulations, respectively). In this case, where both ends of the rod were considered free, the
FE model has only 31 frequencies instead of an infinite number – typical for a 1D continuum. The disper-
sive relations presented in Fig. 7 are shown in three forms: angular velocity as a function of the counter of
the degrees of freedom (1 to 31), phase velocity as a function of the counter and, finally, phase velocity vs
angular velocity. The non-dispersive behaviour of a 1D continuum is shown as well. The most ‘eloquent’ is
the subfigure in the lower part of Fig. 7, showing dispersive relations described by (54) and (56).

We shall summarize. The 1D continuum, represented by the wave equation (42), is a non-dispersive
medium with an infinite number of frequencies. The phase velocity of a propagating harmonic wave is
constant, regardless of its frequency.

0 10 20 30
0

1

2

3

4

counter

ω
∗

Frequency vs. counter

0 10 20 30
0.6

0.8

1

1.2

1.4

counter

c∗
h

Phase velocity vs. counter

0 1 2 3
0.6

0.8

1

1.2

1.4

ω∗

c∗
h

Phase velocity vs. frequency

consistent - eigenvalue
consistent - analytical
diagonal - eigenvalue
diagonal - analytical
continuum

Fig. 7. Dispersive behaviour of 1D constant strain elements with consistent (L1C) and diagonal (L1D) mass matrix formulations.

– number of element lengths in the wave length of a given harmonic

   
 P

ha
se

 v
el

oc
it

y   ,

Counter Counter

–
–

–
–



The finite element model is of dispersive nature. This means that it has a finite number of frequencies;
the velocity of propagation depends on the frequency of a propagating harmonic wave, and, furthermore, the
frequency spectrum is bounded. The limit frequency, corresponding to the limit value of the angular velo-
city ωl , is called the cut-off frequency. In this respect, the finite element model of a continuum behaves as a
high-pass frequency filter. The mechanical consequence of such a frequency limit is that in an FE model the
harmonic waves with frequencies higher than that limit cannot be propagated. They are attenuated, which
mathematically means that a propagating wave with a frequency higher than the cut-off frequency changes
its harmonic vibrating character to an exponential decay form – an attenuated wave (see Brillouin 1953;
Abboud and Pinsky 1992).

Besides the eigenfrequencies, the eigenmodes are also influenced by dispersion effects. Figure 8 presents
the FE eigenmodes (modes of longitudinal vibration) computed numerically from Eq. (59), considering 24
constant strain elements. Since the frequencies correspond to the axial vibrations of the rod, the correspond-
ing eigenmodes represent the axial modes of vibration. To show them in a meaningful way, they are plotted
perpendicular to the axial axis. To emphasize – they do not represent the bending modes.

The first eigenmode, corresponding to the zeroth frequency – representing the case with no vibration at
all – belongs to the zeroth frequency and to the corresponding rigid body motion of the rod, which (since
both its ends are free of support) can freely move as a rigid body. According to the 1D continuum the-
ory (Kolsky 1953), the following eigenmodes of a free-free thin rod are described by a cosine function in
space. As far as the shapes of vibrating modes are concerned, the results of the finite element model for
small frequencies agree relatively well with those of the idealized 1D continuum model. Higher modes,
however, have ‘wrong’ shapes. By using more elements, we will have a higher number of ‘correct’ modes,
but regardless of the number of elements used, the highest modes will not be represented correctly since the
finite element model (composed of elements of finite size) is not as flexible as the ideal continuum, whose
‘elements’ are of infinitesimal dimensions. The highest continuum frequency, corresponding to a null-sized
infinitesimal element, would have an infinitely high value. Evidently, for the higher frequencies, the FE
model behaviour is not in accordance with an a priori assumed harmonic solution, which, as a shape func-
tion, was inserted into the equations of motion. And this is the dispersion.

Look at the last eigenmode, corresponding to the highest, in this case, the 25th frequency. We see that
instead of the expected cosine displacement mode, we have a mode composed of straight lines connecting
the neighbouring element nodes. This shows that these nodes vibrate in opposition. And since the constant
strain element was born with a linear shape function for displacements, there is no way for a rod composed
of these elements to vibrate more violently. This is a fine geometrical explanation of the limited highest
frequency ωl that can be transmitted through an FE model.

5.3.2. Higher-order 1D finite elements

The dispersion analysis of higher-order 1D elements (i.e. quadratic and cubic) (see Okrouhlı́k and Höschl
1993) reveals that by using these elements in 1D, we get a chance to increase the cut-off limit of the highest
available frequency but at the expense of higher computing costs and the appearance of bandpass filters. The
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Fig. 8. All 25 axial eigenmodes of a thin rod modelled by 24 constant strain elements with a consistent mass matrix. 
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dimensionless phase velocities as functions of dimensionless frequencies for 40 linear (L1)1, 20 quadratic
(L2) and 13 cubic (L3) finite elements2 are depicted in Fig. 9. One can observe that for the higher-order
elements, the first part of the dispersion curves, called the optical branch, is ‘improved’. The dispersion
diagrams, however, consist of distinct branches that are separated by certain frequency regions (called the
bandpass filters) through which the particular frequencies cannot propagate. We say that the waves within
these regions are attenuated3, meaning that the mathematical description of waves changes pattern from
harmonic to exponential.

For the L2 element, the second part of the dispersion function is called the acoustic branch (see Brillouin
1953). For the L3 element, there is the third part, which is traditionally also called the optical branch. The
terminology was introduced by Brillouin (1953). In Fig. 9, the attributes C and D, appearing by the L1, L2
and L3 identifiers, signify the consistent and diagonal mass matrix formulations, respectively. In Fig. 10, all
40 eigenmodes of a bar consisting of 13 L3C FEs are depicted. There are longer ‘dispersionless’ parts both
for speeds and for modes. The higher vibration modes are, however, hopelessly ‘spoiled’ (see Okrouhlı́k
and Höschl 1993).

Okrouhlı́k and Höschl (1993) also present the analysis of the so-called Hermitian elements, which are
based on the Hermitian interpolation in which not only displacements are approximated but also their first
derivatives (strains) and the derivatives of those strains. The dispersion analysis of the B-spline based FE
with a higher-order continuity over the FE boundary is described in the works of Kolman et al. (2014) and
Kolman et al. (2017). Spline functions are used as testing and shape functions. In these works, dispersive
behaviour has been studied with respect to the order of spline, order of continuity and type parametrization.
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Fig. 9. Dispersion diagrams for L1, L2 and L3 elements.

1 L stands for the Lagrangian approximation of displacements.
2 The number of elements was chosen in such a way that the numerical effort for the evaluation of all three cases is roughly

identical.
3 Attenuation has nothing in common with damping. It is not accompanied with any loss of energy.
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5.3.3. Linear 2D finite elements

The dispersion analysis of equilateral triangle linear elements has been studied in Brepta and Okrouhlı́k
(1984) and bilinear (4-node) and biquadratic serendipity (8-node) finite elements in Kolman et al. (2016b).
The dispersion graphs of the equilateral triangle linear elements are presented in Figs 11 and 12, dispersion
diagrams of the bilinear FEs are presented in Fig. 13. As we have seen before, the elements with a consistent
mass matrix (plotted by dashed lines) overestimate the ‘correct’ speed of propagation (horizontal lines),
while the speed of propagation for elements with a diagonal mass matrix is systematically underestimated.

In the discretized 2D continuum, the speed of propagation is furthermore influenced by the direction
of wave propagation. This means that a discretized 2D medium exhibits anisotropy behaviour, which does
not exist in an ideal 2D isotropic elastic continuum. The dispersion-induced anisotropy, resulting from
modelling stress wave propagation by equilateral triangle linear elements with consistent and lumped mass
matrices, depicted in Fig.12, is presented using velocity hodographs of wavefronts of waves emanating from
the origin (polar diagram). Wave speeds are normalized with respect to the velocity of longitudinal waves,
i.e. to c1. The wavefronts for longitudinal as well as for shear waves are shown. Besides wavefronts for
the 2D continuum (perfect circles), we see plotted the distributions for three ratios of λ h (numerical wave
length) to H (element size), as the parameter γ∗ = H/λ h. Again, short waves (relative to the mesh size)
exhibit larger dispersion errors. For more details, see Brepta et al. (1985) and Brepta and Okrouhlı́k (1986).
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Fig. 10. Eigenmodes for L3C elements. 
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The dispersive behaviour of a 4-node bilinear square finite element with consistent and diagonal (lumped)
mass matrices is worth recollecting. In Fig. 13, hodographs are presented, showing the positions of longitu-
dinal and transversal wavefronts emanating from the origin, with the resultant dispersion-induced anisotropy.
The wave speeds are normalized by the wave speed of the longitudinal wave, i.e. c1. Four different ratios
of mesh size to wave length are considered. For example, the ratio λ h = 10H, (i.e. γ∗ = 1/10) means that
the wave length is just 1/10 of the mesh size. The effects of temporal dispersion due to different timestep
operators are treated in detail in Section 6.

5.3.4. Higher-order 2D finite elements

Similar to higher-order 1D elements, the dispersion analysis of these 2D elements reveals that there are
acoustic and optical branches appearing in the spectrum. Bandpass filters also appear in Kolman et al.
(2013).

In Fig.14, we see the dispersion diagram for a wave that propagates in the direction of the x coordinate
axis. Dimensionless wave speeds are plotted against dimensionless angular velocities. Figure 11 provides a
comparison in which δ = 0. It shows the situation for a 4-node bilinear square element in which there are two
branches, one for a longitudinal and the other for a transversal wave. For further comparison, the dispersion
diagram for an 8-node biquadratic square element is shown in Fig. 14. There are two acoustic branches (one
for a longitudinal and one for a transversal wave) and four optical ones (two for a longitudinal and two for
a transversal wave). The bandpass filter regions, where wave attenuation occurs, are plotted using dashed
lines.

The analysis shows that the wave speeds in the optical mode range may reach infinite values even if
the corresponding group velocities remain finite. The model of continuum based on 2D quadratic square
elements exhibits unrealistic wave behaviour for optical modes. Also, the existence of bandpass filters,
evoking wave attenuation, is seen – it is indicated by dashed lines.

The dispersion-induced anisotropy of an 8-node quadratic square element is shown in Fig. 15 for both
consistent and diagonal mass matrices. The diagrams indicate that dispersion-induced anisotropy is more
pronounced for shorter waves (higher frequencies), while propagation speeds are systematically smaller for
diagonal mass matrix formulations. As before, the long waves (low frequencies) – for example, character-
ized by the ratio of the order of γ∗ = H/λ h = 1/10 – are subjected to smaller dispersion side effects.

Practical consequences of dispersion-induced attenuation effects are studied using a test involving nu-
merical integration in time. This way, the test results – even if trying to minimize them – are additionally
influenced by temporal discretization errors. Overall, spatial and temporal discretization effects will be
discussed in the next paragraphs of this paper. For a fuller treatment, see Kolman et al. (2016b).
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The following input data are used in the test: square planar geometry in the state of plane stress, as-
sembled of 100 × 100 identical square 8-node biquadratic elements, each with the size of H = 1 mm.
Elastic constants are: Young’s modulus E = 1 MPa, Poisson’s ratio µ = 0.3 and density ρ = 1 kg/m3. The
corresponding wave speed is c1 = 1.16024 m/s, while the ratio of speeds is c1/c2 = 1.87083.

The system is excited by a harmonic point force acting in the middle of the square planar geometry in
the direction of the horizontal axis. The angular velocity range of the applied force is varied in such a way
that it covers the whole spectrum of frequencies, as is depicted in Fig. 16.

The tested angular velocities (in dimensionless form, i.e. ωH/c1 = {1.0,4.5,7.9,8.3}) are indicated
by circles. The limits of individual dispersion branches are also presented. The attenuation regions are
indicated by dashed lines. The time integration of governing equations of motion is provided by means
of the Newmark method with no algorithmic damping, using the timestep ∆t = 1 × 10−5s. This value
of the timestep (expressed by the dimensionless Courant number C = c1∆t/H = 0.011602) is considered
sufficiently small to minimize the effects of the temporal dispersion mentioned in Section 5.4.
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Fig. 16. Effects of attenuation for different dimensionless angular velocities.
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Further dispersion curves are plotted in Fig. 16 – this time accompanied by numerical values indicating
the ranges of individual branches. Displacement distributions (evaluated for a certain time value) are dia-
grammatically added, showing the prescribed excitations for four distinct dimensionless angular velocities,
i.e. {1.0,4.5,7.9,8.3}. Theoretical wavefronts for longitudinal and transversal waves are depicted as well.
For frequencies within the acoustic mode region, the wavefronts are represented rather correctly. For the
higher frequencies within the range of optical modes, one can observe the devastating effect of the attenua-
tion phenomenon.

In practical engineering computations, we do not deal with propagation of monochromatic waves but
with finite-length pulses of various shapes. And these, looking at them through the prism of the Fourier
analysis (Stade 2005), are composed of an infinite number of harmonics whose frequency spectrum ranges
from zero to infinity.

5.4. Temporal-spatial dispersion of FEM

Historically, the dispersion errors of spatial and temporal discretizations were treated independently. To-
day, both approaches are considered simultaneously to achieve reliable FE modelling of transient tasks in
solid continuum mechanics. To limit discretization errors, one must not only minimize the timestep and the
mesh size but also correctly relate the choice of the time integration operators with the mass matrix formu-
lations. The situation is schematically depicted in Fig. 17, where temporal and spatial discretization errors
– depending on the choice of time integration operators and mass matrix formulations – are plotted vs the
timestep and the mesh size, respectively.

One sees that the temporal discretization errors of the central difference method (representing the explicit
methods) and the spatial discretization errors of the diagonal mass matrix formulation produce errors of
opposite signs, which have a tendency to cancel each other out. The same favourable situation exists for the
Newmark method (representing the implicit methods) combined with a consistent mass matrix formulation.
Two other combinations are clearly unsuitable (see Okrouhlı́k 1994).

The temporal-spatial dispersion polar diagram of the bilinear FEM for the explicit time integration with
the diagonal mass matrix is shown in Fig. 18 (see Kolman et al. 2016b), and for the implicit time integration
with the consistent mass matrix in Fig. 19 (see Kruisová et al. 2019). The results in Fig. 18 are presented
for the 4-node bilinear element with a diagonal mass matrix for different mesh size to wave length ratios
γ∗ = {1/10,1/3,2/5,1/2} and for different Courant numbers {0,0.5,0.95,1.0}. The zero Courant number
is taken as a limit approach, and it corresponds to the spatial dispersion analysis. The results in Fig. 19
are presented for the 4-node bilinear element with a consistent mass matrix for different mesh size to wave
length ratios γ∗ = {1/10,1/3,2/5,1/2} and for different Courant numbers {0,0.5,1.0,2.0}. It is of interest
to compare the results presented in Fig. 13, which show the dispersion effects for the 4-node bilinear square
element with consistent and lumped mass matrices, based on the spatial consideration only, with those in
Figs 18 and 19, where both the temporal and spatial discretization effects are taken into account for the
corresponding time integration type and mass matrix.
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Fig. 19. Temporal spatial dispersion for a bilinear square 4�node element with a consistent mass matrix for different mesh size to 
wave length ratios and for different Courant numbers for implicit time integration via the averaged acceleration variant of the New�
mark method.
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5.5. Dispersion and mass matrix formulation

As is written in Section 3, diagonal (lumped) mass matrices are used in explicit time integration schemes.
In Kolman et al. (2013), an ‘optimum’ lumped mass matrix for the studied finite element types is proposed,
and the relationships suggesting the ‘proper’ choice of mesh size and timestep from the known frequency
spectrum of the loading are presented. It is shown that in a plane regular mesh of square biquadratic finite
elements, the corresponding element mass terms for midside nodes are recommended to be set up as mmid =

x ·melem, while the element mass terms for corner nodes are set up as mcorner = (0.25�x)melem, where melem
is the mass of the element and x is the so-called mass distribution parameter. The permissible interval of
the mass parameter guaranteeing the preservation of the element mass is prescribed as x 2 (0,0.25). To
minimize the dispersion error for a square biquadratic finite element, the value x = 0.23 is derived and thus
recommended (see Fig. 20).

5.6. Mesh size and timestep size suggestion

With respect to the temporal-spatial dispersion analysis of plane bilinear and biquadratic elements in explicit
time integration by the central difference method, which is used for transient elastodynamics and wave
propagation analysis, we suggest utilizing uniform finite element meshes and timesteps that satisfy the
following conditions:
• for bilinear square finite elements: the element edge length 10H < lmin, the mass matrix lumped by the
‘row sum’ method and the timestep given by Dt = H/c1;

• for biquadratic square finite elements: the element edge length 5H < lmin, the mass matrix lumped by the
HRZ method and the timestep given by Dt = 0.2H/c1.

Here, lmin = c1/ fmax marks an estimate of the minimum wave length of waves appearing in the problem
to be solved, fmax is the maximum loading frequency given by the character of external loading and c1 is the
speed of a longitudinal wave. In principle, the value lmin depends on the problem to be solved and on its
loading characteristics and spectrum. It should be noted that determining the maximum loading frequency
may be difficult since, in practice, the solved systems are not excited solely by periodic loadings. Also,
the recommendation to employ regular (uniform) meshes in numerical computations of wave propagation
problems in solids is very strong and not acceptable in many practical problems.

For implicit time integration by the average acceleration method, we suggest a suitable mesh size value
given with respect to the wave length lmin is:
• for bilinear square finite elements: the element edge length 10H < lmin, the consistent mass matrix and

the timestep given by Dt = H/c1;
• for biquadratic square finite elements: the element edge length 5H < lmin, the consistent mass matrix and

the timestep given by Dt = 0.5H/c1.
In making these recommendations, we set the numerical parameters of the FE model so that the temporal-

spatial errors are smaller than 1%.
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6. EXAMPLES OF WAVE PROPAGATION MODELLED BY 1D CONSTANT STRAIN FEM

This chapter shows the behaviour of a few classical numerical methods for the time integration of equations
of motion describing stress wave propagation in a thin rod modelled by linear constant strain elements. The
intention is to elucidate the dispersion side effects that result from spatial and temporal discretizations.

As a vehicle for the presentation, the simplest constant strain rod element is used. The local mass and
stiffness matrices are described by Eqs (45), (46) and (47). The rod, assembled of uniform constant strain
elements, is depicted in Fig. 21. Both sides of the rod are free, and the left side of the rod is loaded by the
force with the given time history. No damping is considered. The equations of motion are described by a
system of ordinary differential equations in the form Mq̈+Kq = F(t), where all the quantities are obtained
by a suitable assembling process securing the conditions of displacement compatibility. For more details,
see Okrouhlı́k and Höschl (1993).

The matrices M,K are constant, the global accelerations q̈, displacements q and external forces F are
functions of time and space. The discretized equations of motion are subsequently solved by different meth-
ods for numerical integration in time. In this paragraph, the Newmark, the Houbolt (see Houbolt 1950),
and the central difference methods are alternatively used. The time history of displacements, velocities and
accelerations at chosen discrete time intervals t,∆t,2∆t, . . . tmax, where ∆t denotes the timestep, is observed.

The outlines and rules for the ‘safe’ usage of integration methods are generally advocated. Nevertheless,
it might be of interest to analyse in detail the minute differences obtained by applying different integration
methods to the same task.

In this text, the behaviour of integration procedures and finite elements when applied to studying waves
in a thin rod are presented in pictorial form. 1D Lagrangian elements4 with linear shape functions are used
throughout. Consistent and diagonal mass matrix formulations are studied. All the kinematic and force
quantities are computed and presented in their dimensionless forms (see Okrouhlı́k 2013), e.g. dimension-
less time τ = 1, when the wavefront reaches the end of the rod. When pulse length is discussed, it is
understood that it is related to the time required for the wave to pass through the length of the rod. The
computed quantities could be depicted either along the dimensionless length (from 0 to 1) of the rod or as
functions of time (in timesteps) for a chosen node. The main identifiers accompanying the figures are:

L

l0

q1 q2 q3 q4 q5 qkmax qkmax+1

1 2 3 4 kmaxA

Fig. 21. Thin rod assembled of kmax uniform constant strain rod elements.

4 Lagrangian, not Hermitian, polynomial approximation is used for displacement approximation.

This chapter shows the behaviour of a few classical numerical methods for the time integration of equations
of motion describing stress wave propagation in a thin rod modelled by linear constant strain elements. The
intention is to elucidate the dispersion side effects that result from spatial and temporal discretizations.

As a vehicle for the presentation, the simplest constant strain rod element is used. The local mass and
stiffness matrices are described by Eqs (45), (46) and (47). The rod, assembled of uniform constant strain
elements, is depicted in Fig. 21. Both sides of the rod are free, and the left side of the rod is loaded by the
force with the given time history. No damping is considered. The equations of motion are described by a
system of ordinary differential equations in the form Mq̈+Kq = F(t), where all the quantities are obtained
by a suitable assembling process securing the conditions of displacement compatibility. For more details,
see Okrouhlı́k and Höschl (1993).

The matrices M,K are constant, the global accelerations q̈, displacements q and external forces F are
functions of time and space. The discretized equations of motion are subsequently solved by different meth-
ods for numerical integration in time. In this paragraph, the Newmark, the Houbolt (see Houbolt 1950),
and the central difference methods are alternatively used. The time history of displacements, velocities and
accelerations at chosen discrete time intervals t,∆t,2∆t, . . . tmax, where ∆t denotes the timestep, is observed.

The outlines and rules for the ‘safe’ usage of integration methods are generally advocated. Nevertheless,
it might be of interest to analyse in detail the minute differences obtained by applying different integration
methods to the same task.

In this text, the behaviour of integration procedures and finite elements when applied to studying waves
in a thin rod are presented in pictorial form. 1D Lagrangian elements4 with linear shape functions are used
throughout. Consistent and diagonal mass matrix formulations are studied. All the kinematic and force
quantities are computed and presented in their dimensionless forms (see Okrouhlı́k 2013), e.g. dimension-
less time τ = 1, when the wavefront reaches the end of the rod. When pulse length is discussed, it is
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computed quantities could be depicted either along the dimensionless length (from 0 to 1) of the rod or as
functions of time (in timesteps) for a chosen node. The main identifiers accompanying the figures are:
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t time;
τ dimensionless time with respect to the time

the wave takes to pass through the bar;
∆t timestep size of time integration;
type of loading Heaviside pulse, rectangular pulse, half-

sine pulse;
method of direct time int Newmark, Houbolt, central differences;
type of mass matrix (cons) consistent, (diag) diagonal;
γ Newmark artificial damping parameter;
x position;
L length of a bar;
hmts number of timesteps the integration proce-

dure requires to go through the length of
the smallest element;

timp length of pulse related to the time of wave
propagation required to pass through the
length of the bar.

The variable hmts used in this study is the reciprocal value of the Courant number, i.e. C = wave speed
× timestep/element size.

Only a few cases are presented here. More details can be found in Okrouhlı́k (2013).

Study case 1 – Fig. 22

Parameters: 200 elements with a consistent mass matrix; half-sine pulse with time ‘length’ timp = 0.25
(related to the time required by the wave to pass the full length of the rod); central difference and Newmark
methods with γ = 0.5 (indicating no algorithmic damping); timestep ∆t = 0.0025, hmts = 2.
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Fig. 22. Propagation of sine pulse through an elastic bar computed for 200 linear FE elements, the central difference method and
the Newmark method with β = 1/4 and γ = 0.5 for the consistent mass matrix. Spurious signals are in the front of the wave. Other
parameters: ∆t = 0.0025, htms = 2, Courant number C = 0.5, dimensionless time τ = 0.7.
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In Fig. 22, one can see the FE response of the rod to the external half-sine pressure force pulse in time
applied on the left-hand face of the rod. Such a force pulse induces a compression strain pulse in the rod,
which propagates from left to right. The FE results should be mentally compared with those of an idealized
1D continuum represented by the wave equation (42), which, as a non-dispersive medium, would ensure that
the introduced pulse (a half-sine pulse in this case) is propagated in an undistorted manner by the constant
speed c =

√
E/ρ .

Figure 22 shows the distribution of strains, displacements, velocities and accelerations as they are dis-
tributed along the length of the rod. The picture is frozen at the moment when the wavefront reaches 0.7 of
the length of the rod, which corresponds to the nondimensional time τ = 0.7. The displacement distribution
indicates that most of the body is at rest. The right-hand side of the rod (in front of the pulse) does not yet
know that something has happened at its loaded face. But still, there is a visible nonzero signal in front of
the wavefront, where, according to the wave equation, the rod should know nothing about the loading and
be at absolute rest. The existence of these so-called spurious phenomena could be explained by conclu-
sions stemming from the dispersion analysis for the consistent mass matrix formulation, which predicts a
systematic overestimation of propagation speeds for higher frequencies.

The half-sine pulse, not being a harmonic function, has a continuous unbound spectrum – higher fre-
quencies propagate faster and are thus overrunning the ‘correct’ wavefront.

Velocity distribution is easily understandable since it is the time derivative of displacement. Significant
errors in acceleration are observed and are caused by the numerical magnification of velocity errors.

Study case 2 – Fig. 23

Note – similar case but with a diagonal mass matrix

When the rod is modelled by constant strain elements with a diagonal mass matrix formulation, the sys-
tematic underestimation of propagation speeds for higher frequencies can be observed. In this case, there
is a visible nonzero signal behind the ‘real’ wavefront. See Fig. 23, where the strain results for the central
difference method are presented.
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Fig. 23. Propagation of sine pulse through an elastic bar computed for 200 linear FE elements, the central difference method with a
diagonal mass matrix – spurious signals are behind the wave. Other parameters: ∆t = 0.0025, htms = 2, Courant number C = 0.5,
dimensionless time τ = 0.7.
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Study case 3 – Fig. 24

There are 200 elements, a consistent mass matrix; rectangular pulse, timp = 0.25; central difference method
and Newmark method with γ = 0.5; timestep size ∆t = 0.0025, hmts = 2.

Let us observe (see Fig. 24) what happens when a rectangular pulse is being applied. The expected strain
distribution (a rectangle) is ‘spoiled’ more than in the case of half-sine loading since the rectangular pulse
contains more high frequency components than its half-sine counterpart. This is what the Fourier analysis
predicts (see Stade 2005). The high-frequency components appearing in the solution are due to cumulative
dispersion effects that always accompany the FE analysis. Instead of reasonable acceleration values, pure
numerical litter is obtained. One is playing with fire when applying a loading pulse with discontinuities
in time. We have done it intentionally. Application of any discontinuous loading function is actually the
ultimate test of any time discretization method. Theoretically, displacements due to a rectangular pulse
are functions of time possessing a sudden change of gradient. Velocity distribution (the time derivative of
displacements) should have finite discontinuities in its distribution at locations corresponding to the sudden
slope change in displacement distribution. Consequently, acceleration as the time derivative of velocity
should contain the Dirac-type discontinuity at these locations. Such a condition is impossible to satisfy by
any numerical computation.

In the 1D case, the Newmark method can be modified in such a way that the time and space discretization
errors are cancelled out. It can be found in Subbaraj and Dokainish (1989) that due to a unique speed of
wave propagation in a 1D elastic continuum, the corresponding FE model, discretized in time and space, has
a dispersionless property for γ = 0.5, β = 0.6 and htms = 1 for the consistent mass matrix. This miraculous
behaviour of strains is shown in Fig. 25 for a Heaviside pressure pulse, registered at dimensionless time
τ = 0.7. A dispersionless Newmark modification for 2D and 3D wave propagations was recently reported
in the works of Cho et al. (2013), Kolman et al. (2016a) and Cho et al. (2019).
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Fig. 24. Propagation of rectangular pulse through an elastic bar computed for 200 linear FE elements, the central difference method
and the Newmark method with β = 1/4 and γ = 0.5 for the consistent mass matrix. Other parameters: ∆t = 0.0025, htms = 2,
Courant number C = 0.5, dimensionless time τ = 0.7.
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Fig. 25. Strain results for rectangular pulse of the ‘dispersionless’ Newmark method with the parameters γ = 0.5, β = 0.6, a
consistent mass matrix and htms = 1.
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Fig. 26. Results of sharp pulse propagation in an elastic bar for the method mitigating spurious oscillations: diagonal mass matrix,
htms = 2, Courant matrix C = 0.5.

One way to improve the temporal-spatial dispersion behaviour of finite element computation for discon-
tinuous wave propagation is to employ the method for mitigating spurious oscillations presented by Park et
al. (2012). In this method, the push-forward method and the central difference method are combined, and
the spurious stress oscillations are suppressed with minimal numerical dissipation. This method has been
extended into multidimensional wave propagation based on wave-component decomposition in Cho et al.
(2013), Kolman et al. (2016a). The results of discontinuous wave propagation in a bar are shown in Fig. 26.

Study case 4 – Fig. 27
There are 200 elements, a consistent mass matrix; rectangular pulse with the time length timp = 0.25;
Houbolt method and Newmark method with γ = 0.6; timestep size ∆t = 0.0025, htms = 2.

A cosmetic effect, leading to partial eradication of high-frequency spurious frequencies, can be achieved
by marching in time using the Newmark method with γ > 0.5, which introduces the so-called algorithmic
damping into the solution. In this case, neither method of integration conserves energy. The results are
presented in Fig. 27. Notice how ‘nicely’ the ‘Dirac pulse singularity’ is displayed in the acceleration
distribution. It should be noted that both the Newmark method with numerical damping as well as the
Houbolt method are not energetically conservative – they consume energy.
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Fig. 25. Strain resultsfor rectangular pulse of the ‘dispersionless’ Newmark method with the parameters � = 0.5, � = 0.6, a consistent 
mass matrix and htms = 1.
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Fig. 27. Propagation of rectangular pulse through an elastic bar computed for 200 linear FE elements for the Houbolt method vs
the Newmark method with algorithmic damping.

It was shown how the type of loading, the finite element formulation and the type of integration method
influence the FE modelling process of stress wave propagation in a thin elastic rod. It is of the utmost
importance to keep the high frequencies in the solution when impact tasks are analysed. To achieve this,
diagonal mass matrices, explicit methods and smaller than critical timesteps are advocated.

Often, we deal with ‘mild’ loadings, where the high frequency components do not carry too much
energy, and the corresponding modes, which are filtered out by using unconditionally stable methods with
large timesteps, do not considerably spoil the solution. Energy checks might always be useful.

The rectangular pulse, used in the above testing, contains discontinuities. As such, it does not appear
in nature, and to model it numerically is a sort of computational crime. But it represents the ultimate
standard for rough testing integration procedures. When modelling transient phenomena by finite elements,
discretization errors cannot be fully eliminated, only suppressed to a certain extent.

The literature devoted to this subject is voluminous. For further study, see Goudreau and Taylor (1973),
Hulbert and Hughes (1990), Hughes and Liu (1978), Chung and Hulbert (1993), Lew et al. (2004), Park et
al. (2012), Bathe and Noh (2012), Hughes (2000), Belytschko et al. (2000).

7. CONCLUSIONS

Dispersion is a phenomenon characterized by the fact that the speed of wave propagation depends on its
frequency. The unbound solid elastic continuum is thus declared as the perfect dispersionless medium since
all the harmonic stress waves propagate at the same speed, regardless of their frequencies. The propagation
of stress waves in elastic solid continua is described by partial differential equations of motion expressed in
spatial and temporal coordinates. The finite element method replaces the infinitesimally fine structure of a
continuum with small parts – elements of finite size. This process is called the discretization in space (some-
times semidiscretization) and produces ordinary differential equations instead. The dispersion analysis is
based on observing the differences between the vibration responses within continuous and semidiscretized
objects. The analysis (i.e. the assessment of differences called the dispersion errors) is provided both ana-
lytically and numerically. The latter approach leads to the generalized eigenvalue problem. This part of the
analysis, where finite element size plays an important role and the time variable is merely a parameter, leads
to the spatial dispersion explanation.
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When the time response of a semidiscretized body to a transient excitation is analysed, it is necessary
to solve the resulting equations of motion (having the form of ordinary differential equations) numerically,
applying various step by step integration procedures. This way, the time response of a body is obtained not
continuously, but at discrete time intervals, separated by so-called timesteps. This part of the analysis, where
errors arising from time discretization are assessed, explains the phenomenon of temporal dispersion.

In this paper, the classical approach to the assessment of spatial and temporal dispersion is comple-
mented by the so-called spatial-temporal dispersion analysis, suggesting practical steps toward reliable finite
element modelling of transient tasks in solid continuum mechanics. To limit the discretization errors, one
must not only minimize the timestep and the mesh size but also correctly relate the choice of time integra-
tion operators with mass matrix formulations (as well as take into account the frequency spectrum of the
loading).

The dispersion analysis is devoted to 1D and 2D finite elements, both for linear and quadratic displace-
ment approximations. The following items are presented in detail:

• Compared to the infinitely long frequency spectrum in an ideal continuum, the finite element fre-
quency spectrum is bounded and limited by the so-called cut-off frequencies. This means that the
high-frequency components of the propagating signal are filtered out. The frequency limits for con-
sistent mass matrices are higher than those for diagonal mass matrices.

• With respect to the speed of wave propagation of an ideal continuum, the speed of wave propagation
in a finite element model is overestimated when the consistent mass matrix formulation is used. It
is underestimated with the diagonal mass matrix formulation.

• In 2D and 3D spaces, discretization-induced anisotropy is observed.
• Time integration methods behave as high-frequency filters as well. The high-frequency components

of propagating waves are filtered out.
• Explicit integration methods are conditionally stable only. The integration process has to proceed in

time by integration steps Dt that are smaller than the so-called critical timestep Dtcrit . Not satisfying
this condition leads to an unbound numerical response.

• Different ways to estimate the critical timestep are presented. Generally, the computing speed should
not be higher than the wave speed.

• The dimensionless timestep, defined as C = wave speed ⇥ timestep/element size and called the
Courant number, plays an important role when assessing discretization errors in space and time.

• Implicit integration methods are unconditionally stable. Although any timestep could be used, a
physically accurate modelling of time response would not be guaranteed.

• The temporal discretization errors of the central difference method (representing the explicit methods)
and the spatial discretization errors of the diagonal mass matrix formulation produce errors of opposite
signs, which have a tendency to cancel each other out. The same favourable situation exists for the
Newmark method (representing the implicit methods) when used in combination with a consistent
mass matrix formulation.

For higher-order elements, where displacements are approximated by higher-order Lagrangian polyno-
mials, the following conclusions are observed:

• Dispersion analysis of higher-order elements for optical modes tends to reveal unrealistic wave be-
haviour. One can increase the cut-off limit for the highest available frequency, but this comes at the
expense of increased computing costs.

• Dispersion diagrams consist of distinct branches that are separated by certain frequency regions
(sometimes called bandpass filters) through which the harmonic waves of particular frequencies can-
not propagate. These waves are strongly attenuated. Mathematically, the description of waves in
these regions changes from that of a vibrating to an exponential character. Attenuation has nothing in
common with damping; it is not accompanied by a loss of energy.

• To minimize dispersion errors due to the diagonalization of mass matrices for a square biquadratic
finite element, the value of the so-called mass distribution parameter is derived. It is shown how the
type of mass matrix diagonalization influences the displacement behaviour.
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• Dispersion results are compared for 4-node bilinear elements and for 8-node biquadratic elements with
diagonal mass matrices of different mesh size to wave length ratios and different Courant numbers.

• With respect to the temporal-spatial dispersion analysis of plane bilinear and biquadratic elements in
explicit time integration, used for transient elastodynamics and wave propagation analysis, uniform
finite element meshes are suggested and timesteps are recommended.

In practical engineering computations, we do not deal with the propagation of monochromatic harmonic
waves but with finite-length pulses of various shapes. And these, viewing them through the prism of the
Fourier analysis, are composed of infinitely many harmonics whose frequencies range from zero to infinity.
Also, establishing the ‘optimum’ value of the element size and the timestep depends on the frequency
spectrum of the loading.
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Ülevaade  lineaarsete  elastsete  lainete  modelleerimisest  ning  esimest  ja  teist  järku   
lõplike  elementide  ajalis�ruumiline  dispersioon 

 
Radek Kolman, Miloslav Okrouhlík ja Alena Kruisová  

 
Artiklis on vaatluse all elastse lainelevi modelleerimine tahkistes lõplike elementide meetodil. Pideva ruumi ja aja disk�
reetimine toob paratamatult kaasa numbrilise dispersiooni tekke ning seetõttu ei anna lõplike elementide meetod lainelevi 
ülesannete puhul täiesti täpseid tulemusi. Toetudes oma uuringutele, näitavad autorid, et numbrilisest dispersioonist 
tekkivaid ebatäpsusi saab minimeerida, kasutades optimaalses koguses elemente. Artiklis antakse konkreetseid soovitusi 
diskreetse arvutusskeemi valikuks. 
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