ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Short communication
The applicability of sulfoxide Michael acceptor – 2­-(S)-­[(4­-methylphenyl)sulfinyl]-­2­-cyclopenten­-1­-one in constructing the carbon skeleton of 9,11­-secosterols; pp. 223–227
PDF | https://doi.org/10.3176/proc.2024.3.06

Authors
Kristi Rõuk, Marek Kõllo, Ivar Järving, Margus Lopp
Abstract

A possibility of use of the Michael addition reaction of the A,B­-ring fragment enolate to sulfoxide 2­-(S)-­[(4­-methylphenyl)sulfinyl]-­2­-cyclopenten­-1­-one for constructing the main skeleton of 9,11­-secosterols was studied. The reaction was conducted with the racemic or the enantiomerically enriched sulfoxide as the acceptor, affording a mixture of five or three main diastereomers, respectively. It was shown that the diastereoselectivity of that addition reaction is relatively low and does not afford a competitive new route for the total synthesis of secosterols.

References

1. Migliuolo, A., Piccialli, V. and Sica, D. Structure elucidation and synthesis of 3β,6α-dihydroxy-9-oxo-9, 11-seco-5α-cholest-7-en-11-al, a novel 9,11-secosterol from the sponge Spongia officinalis. Tetrahedron, 1991, 47(37), 7937–7950. 
https://doi.org/10.1016/S0040-4020(01)81948-7  

2. Migliuolo, A., Piccialli, V. and Sica, D. Two new 9,11-secosterols from the marine sponge Spongia officinalis. Synthesis of 9,11-seco-3β,6α,11-trihydroxy-5α-cholest-7-en-9-one. Steroids, 1992, 57(7), 344–347. 
https://doi.org/10.1016/0039-128X(92)90054-D  

3. Adinolfi, R., Migliuolo, A., Piccialli, V. and Sica, D. Isolation and synthesis of a new 9,11-secosterol from the sponge Spongia officinalis. J. Nat. Prod., 1994, 57(9), 1220–1226. 
https://doi.org/10.1021/np50111a005  

4. Koljak, R., Pehk, T., Järving, I., Liiv, M., Lopp, A., Varvas, K. et al. New antiproliferative 9,11-secosterol from soft coral gersemia fruticosaTetrahedron Lett., 1993, 34(12), 1985–1986. 
https://doi.org/10.1016/S0040-4039(00)91981-6  

5. Sica, D. and Musumeci, D. Secosteroids of marine origin. Steroids, 2004, 69(11–12), 743–756. 
https://doi.org/10.1016/j.steroids.2004.09.001  

6. Lopp, A., Pihlak, A., Paves, H., Samuel, K., Koljak, R. and Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids, 1994, 59(4), 274–281. 
https://doi.org/10.1016/0039-128X(94)90113-9  

7. Koljak, R., Lopp, A., Pehk, T., Varvas, K., Müürisepp, A.-M., Järving, I. et al. New cytotoxic sterols from the soft coral Gersemia fruticosaTetrahedron, 1998, 54(1–2), 179–186. 
https://doi.org/10.1016/S0040-4020(97)10268-X  

8. Kuo, L.-M., Chen, P.-J., Sung, P.-J., Chang, Y.-C., Ho, C.-T., Wu, Y.-H. et al. The bioactive extract of Pinnigorgia sp. induces apoptosis of hepatic stellate cells via ROS-ERK/ JNK-Caspase-3 signaling. Mar. Drugs, 2018, 16(1), 19. 
https://doi.org/10.3390/md16010019  

9. Chang, Y.-C., Hwang, T.-L., Sheu, J.-H., Wu, Y.-C. and Sung, P.-J. New anti-inflammatory 9,11-secosterols with a rare tricyclo[5,2,1,1]decane ring from a formosan gorgonian Pinnigorgia sp. Mar. Drugs, 2016, 14(12), 218–224.
https://doi.org/10.3390/md14120218  

10. He, H., Kulanthaivel, P., Baker, B. J., Kalter, K., Darges, J., Cofield, D. et al. New antiproliferative and antiinflammatory 9,11-secosterols from the gorgonian Pseudopterogorgia sp. Tetrahedron, 1995, 51(1), 51–58. 
https://doi.org/10.1016/0040-4020(94)00962-T  

11. Huang, C.-Y., Su, J.-H., Duh, C.-Y., Chen, B.-W., Wen, Z.-H., Kuo, Y.-H. et al. A new 9,11-secosterol from the soft coral Sinularia granosaBioorg. Med. Chem. Lett., 2012, 22(13), 4373–4376. 
https://doi.org/10.1016/j.bmcl.2012.05.002  

12. Dopeso, J., Quiñoá, E., Riguera, R., Debitus, C. and Bergquist, P. R. Euryspongiols: ten new highly hydroxylated 9,11-secosteroids with antihistaminic activity from the sponge euryspongia sp. Stereochemistry and reduction. Tetrahedron, 1994, 50(12), 3813–3828. 
https://doi.org/10.1016/S0040-4020(01)90401-6  

13. Yang, I., Choi, H., Nam, S.-J. and Kang, H. A new 9,11-secosterol with a 1,4-quinone from a Korean marine sponge Ircinia sp. Arch. Pharm. Res., 2015, 38(11), 1970–1974. 
https://doi.org/10.1007/s12272-015-0620-9  

14. Yang, I., Choi, H., Won, D. H., Nam, S.-J. and Kang, H. An Antibacterial 9,11-secosterol from a marine sponge Ircinia sp. Bull. Korean Chem. Soc., 2014, 35(11), 3360–3362. 
https://doi.org/10.5012/bkcs.2014.35.11.3360  

15. Li, H., Matsunaga, S. and Fusetani, N. A new 9,11-secosterol, stellettasterol from a marine sponge Stelletta sp. Experientia, 1994, 50, 771–773. 
https://doi.org/10.1007/BF01919380  

16. Migliuolo, A., Piccialli, V. and Sica, D. Structure elucidation and synthesis of 3β,6α-dihydroxy-9-oxo-9, 1l-seco-5α-cholest-7-en-11-al, a novel 9,11-secosterol from the sponge Spongia officinalis. Tetrahedron, 1991, 47(37), 7937–7950. 
https://doi.org/10.1016/S0040-4020(01)81948-7  

17. Jäälaid, R., Järving, I., Pehk, T. and Lille, Ü. First partial synthesis of 9,11-secosterols with the modified side chain. Proc. Estonian Acad. Sci. Chem., 1998, 47(4), 196–199.
https://doi.org/10.3176/chem.1998.4.05

18. Jäälaid, R., Järving, I., Pehk, T., Parve, O. and Lille, Ü. Short synthesis of novel 9,11-secosterols. Nat. Prod. Lett., 2001, 15(4), 221–228. 
https://doi.org/10.1080/10575630108041285  

19. Kuhl, A. and Kreiser, W. Partial synthesis of a marine secosterol from Gersemia fruticosa: preparation of the inter­mediate precursor 3β,6α-diacetoxy-24-methyl-12-oxo-5α-chol-9,11-en-24-oate. Tetrahedron Lett., 1998, 39(10), 1145– 1148. 
https://doi.org/10.1016/S0040-4039(97)10875-9  

20. Kuhl, A. and Kreiser, W. Progress in partial synthesis of a marine secosterol from Gersemia fruticosa: preparation of the steroidal core unit. Collect. Czechoslov. Chem. Commun., 1998, 63(7), 1007–1011.
https://doi.org/10.1135/cccc19981007

21. Kongkathip, B., Hasakunpaisarn, A., Boonananwong, S. and Kongkathip, N. Synthesis of cytotoxic novel 9,11-secosterol analogs: structure/activity studies. Steroids, 2010, 75(12), 834–847. 
https://doi.org/10.1016/j.steroids.2010.05.003  

22. Noack, F., Heinze, R. C. and Heretsch, PContemporary synthetic strategies towards secosteroids, abeo-steroids, and related triterpenes. Synthesis, 2019, 51(10), 2039–2057. 
https://doi.org/10.1055/s-0037-1611576

23. Li, X., Zhang, Z., Fan, H., Miao, Y., Tian, H., Gu, Y. et al. Concise synthesis of 9,11-secosteroids pinnigorgiols B and E. J. Am. Chem. Soc., 2021, 143(13), 4886−4890. 
https://doi.org/10.1021/jacs.0c13426  

24. Miao, Y., Li, X., Zhang, M., Fan, H. and Gui, J. Synthesis of 9,11-secosteroids pinnisterol E, glaciasterol B, and 6‑keto-aplidiasterol B. Org, Lett., 2022, 24(8), 1684–1688. 
https://doi.org/10.1021/acs.orglett.2c00281  

25. Kõllo, M., Kasari, M., Kasari, V., Pehk, T., Järving, I., Lopp, M. et al. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein J. Org. Chem., 2021, 17, 581–588. 
https://doi.org/10.3762/bjoc.17.52  

26. Aav, R., Kanger, T., Pehk, T. and Lopp, M. Synthesis of the AB-ring of 9,11-secosterols. Synlett, 2000, 4, 529–531.
https://doi.org/10.1055/s-2000-6562

27. Kõllo, M., Aav, R., Tamp, S., Jarvet, J. and Lopp, M. Asymmetric synthesis of the 2,2,3-trisubstituted cyclopentanone, D-ring fragment of 9,11-secosterols. Tetrahedron, 2014, 70(38), 6723–6727. 
https://doi.org/10.1016/j.tet.2014.07.079  

28. Kõllo, M., Rõuk, K., Järving, I., Pehk, T. and Lopp, M. Towards the total synthesis of 9,11-secosterol: linking A,B- and D-rings with Michael addition to sulfone-activated cyclopentenone. Tetrahedron, 2023, 136, 133363. 
https://doi.org/10.1016/j.tet.2023.133363  

29. Posner, G. H., Mallamo, J. P., Hulce, M. and Frye. L. L. Asymmetric induction during organometallic conjugate addition to enantiomerically pure 2-(arylsulfinyl)-2-cyclo-pentenones. J. Am. Chem. Soc., 1982, 104(15), 4180–4185. 
https://doi.org/10.1021/ja00379a022  

30. Posner, G. H. and Switzer, C. Total synthesis of natural estrone and estradiol methyl ethers in extremely high enantiomeric purity via an asymmetric Michael addition to an unsaturated sulfoxide. J. Am. Chem. Soc., 1986, 108(6), 1239–1244. 
https://doi.org/10.1021/ja00266a019  

31. Posner, G. H. Asymmetric synthesis of carbon-carbon bonds using sulfinyl cycloalkenones, alkenolides, and pyrones. Acc. Chem. Res., 1987, 20(2), 72–78.
https://doi.org/10.1021/ar00134a005

32. Di Furia, F., Modena, G. and Seraglia, R. Synthesis of chiral sulfoxides by metal-catalyzed oxidation with t-butyl hydro­peroxide. Synthesis, 1984, 1984(4), 325–326. 
https://doi.org/10.1055/S-1984-30829  

33. Kõllo, M., Rõuk, K. and Lopp, M. Synthesis of 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one, a D-ring pre­cursor of 9,11-secosterols. Proc. Estonian Acad. Sci., 2022, 71(4), 307–313. 
https://doi.org/10.3176/proc.2022.4.01   

Back to Issue