
INTRODUCTION 
 
Secosterols are compounds of the sterol family that bear 
a cleaved ring in the steroid tetracyclic nucleus. 9,11­
Secosterols are a subtype of sterols that have a cleaved 
bond between the 9th and the 11th carbon in the C­ring. 

9,11­Secosterols were first discovered at the beginning 
of the 1990s [1–3]. Secosterol 1 was isolated from the soft 
coral Gersemia fruticosa by the Lille research team at the 
same time [4]. In fact, the majority of these secosteroids 
have been isolated from marine organisms, such as 
sponges, gorgonians and soft corals [5]. 9,11­Secosterols 
exhibit various biological activities, such as cytotoxic, 
antiproliferative [4,6,7], apoptosis induction [7,8], anti­
inflammatory [9–11], antihistaminic [12], antibacterial 
[13,14] and antifungal [15] ability. These properties make 
them attractive lead compounds for the development of 
new drug candidates. 

The first semi­synthetic pathway to secosterols, start ­
ing from natural sterols, was elaborated by the Sica group 
[16]. Later, Lille and several other research groups have 
developed a number of semi­synthetic schemes [17–24]. 
Recently, we used a whole­cell­catalysis­assisted synthesis 
of 9,11­secosterols [25]. With the ever­growing number 
of new 9,11­secosterol structures and with the need to test 
these structures, a more general total synthesis pathway 
was required. Therefore, we have recently devel oped a 
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Abstract. A possibility of use of the Michael addition reaction of the A,B­ring fragment enolate to sulfoxide 2­(S)­[(4­methyl ­
phenyl)sulfinyl]­2­cyclopenten­1­one for constructing the main skeleton of 9,11­secosterols was studied. The reaction was conducted 
with the racemic or the enantiomerically enriched sulfoxide as the acceptor, affording a mixture of five or three main diastereomers, 
respectively. It was shown that the diastereoselectivity of that addition reaction is relatively low and does not afford a competitive 
new route for the total synthesis of secosterols. 
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Scheme 1. The structure of sterols.
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general total synthesis scheme for 9,11­secosterols [26]. 
Our strategy consists of preparing the A,B­ring and D­ring 
fragments separately and then connecting them by an 
appropriate addition reaction, as it is presented in Scheme 2. 

The syntheses of the A,B­ring and D­ring fragments 
were solved successfully some years ago [27,28]. The 
connection of these two substituted fragments, however, 
was not a straightforward task. The problem was finally 
solved by using sulfone­activated cyclopentanones [26]. 
Now we have turned our attention to the works of Posner 
and colleagues, who have demonstrated that enantiomeric 
cyclopentenone sulfoxides 3 can also act as Michael ac ­
cep tors, allowing, in certain cases, the generation of a 
new C­C bond in good yield and stereoselectivity [29–
31]. The requisite enantiomerically enriched sulfoxide 3 
can be prepared from the corresponding sulfide by using  
the titanium(IV)isopropoxide (Ti(iPrO)4)/(+)­diethyl 

L­tartrate ((+)­DET)/tert­butyl hydroperoxide (TBHP) 
complex, according to Modena et al. [32,33], resulting in 
(+)­3 with ee 99% after recrystallization. 

Thus, we decided to use the enantiomerically enriched 
A,B­ring precursor 2 and both the racemic and enantio ­
merically enriched D­ring precursor 2­[(4­methylphenyl) 
sulfinyl]­2­cyclopenten­1­one (rac­3 and (+)­3) in con ­
structing the 9,11­secosterol skeleton. 
 
 
RESULTS  AND  DISCUSSION 
 
Both the racemic sulfoxide rac­3 and enantiomerically 
enriched sulfoxide (+)­3 were prepared according to [33]. 
The Michael addition reaction was performed according 
to Scheme 3 by using standard conditions from [26]. The 
reaction of rac­3 gave Michael addition product 4 in 51% 
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 Scheme 3. The Michael addition reactions of 2 with rac­3 and with (+)­3 gave Michael product 4. 

!
  * according to HPLC­HRMS 
** according to HPLC­HRMS analysis, the crude mixture contained compounds 2, (+)­3 and 4 with  
     53%, 5% and 41%, respectively

!
 
 

Scheme 2. Retrosynthetic analysis of the total synthesis of 9,11­secosterols. 
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yield as a mixture of five main diastereomers accord ­
ing to HPLC­HRMS (Fig. 1). The structure of the main 
isomers was confirmed by 1H and 13C NMR spectra of the 
mixture, considering the spectra of the corresponding 
sulfones from our previous publication [28]. It was not 
possible to deter mine the exact ratio of the diastereomers 
due to over lapping peaks in both the chromatogram and 
the NMR spectra. It was concluded that the process is 
partly diastereo selective, but the stereoselectivity is not 
sufficient.  

The same reaction with the enantioenriched sulfoxide 
(+)­3 (ee 97%) resulted in a mixture of three diastereo ­
mers with approximate ratios 2:2:1, according to HPLC­

HRMS (Fig. 2), and in 41% yield. The 1H and 13C spectra 
were similar to those obtained from the previous reaction. 
Additionally, the crude mixture contained the unreacted 
start ing materials 2 (in 53%) and (+)­3 (in 5%). The stereo ­
induction of the sulfoxide group is not sufficient to afford 
a stereoselective Michael addition reaction. 
 
 
CONCLUSIONS 
 
We demonstrated that sulfoxide 3 as a Michael acceptor 
is not superior to the corresponding sulfone in the con ­
nection reaction of the A,B­ and D­rings in 9,11­seco ­
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Fig. 1. HPLC chromatogram* of the mixture of diastereomers obtained when using rac­3. 
 

* HPLC: Agilent C18, 88% MeOH:H2O(0.05% HCOOH) 88:12, 0.2 mL/min, 230 nm: 1. diastereomer 9.4 min, 2. diastereomer 
  10.3 min, 3. diastereomer 12.5 min, 4. diastereomer 13.0 min, 5. diastereomer 18.2 min. 

 
 

Fig. 2. HPLC chromatogram* of the diastereomers obtained from the reaction with (+)­3. 

* HPLC: Zorbax Eclipse Plus C18 Rapid Resolution HD, 85% MeOH:H2O(0.05% HCOOH) 85:15, 0.2 mL/min, 210 nm:  
   1. diastereomer 3.5 min, 2. diastereomer 3.9 min, 3. diastereomer 4.8 min.
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sterols due to the low stereoselectivity. In fact, sulfoxide 
3 does not offer any benefit. At the same time, the use of 
sulfones affords a mixture of two easily separable dia ­
stereo mers in good yield, and, as a result, a simple method 
for the total synthesis of 9,11­secosterols is achieved, as 
described in our recent article [28].  
  
 
NOTES 
 
1. Assignment of 1H and 13C chemical shifts were based 

on the 1D and 2D FT NMR spectra measured with a 
Bruker Avance III 400 MHz instrument. Residual 
solvent signals were used (CDCl3: δ = 7.26 1H NMR, 
δ = 77.2 13C NMR) as internal standards. HPLC­HRMS 
spectra were recorded with an Agilent Technologies 
6540 UHD Accurate­Mass QTOF LC/MS spectro meter 
by using ESI ionization. (4S,4αS,6S,8αS)­4,6-bis((tert-
butyldimethylsilyl)oxy)­8α­methyl­2­(3­oxy­2­(p-tolyl ­
sul finyl)cyclopentyl) octahydronaphtalene­1(2H)­one 
4 was obtained as a yellow solid. It was identified as 
a mixture of five diastereomers by HPLC­HRMS. For 
C35H58O5SSi2, [M+H]+ calculated 647.3896, found 
647.3616. Rf = 0.46 (20% acetone/petroleum ether; UV 
254, p­ani saldehyde). 13C­NMR (100 MHz, CDCl3): 
δ (ppm) 210.57, 209.71, 202.86, 131.96, 130.89, 
130.33, 130.20, 123.92, 73.99, 71.34, 68.54, 68.28, 
50.35, 49.67, 47.63, 47.41, 46.81, 40.57, 35.44, 32.08, 
31.65, 31.06, 30.43, 29.51, 26.01, 25.98, 25.92, 25.90, 
22.84, 20.26, 18.39, –4.00, –4.11, –4.53, –4.66. 
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