Mathematical modelling of physical phenomena is based on the laws of physics, but for complicated processes, phenomenological models could enhance the descriptive and prescriptive power of the analysis. This paper describes some hybrid models, where in addition to the physics-driven part, some phenomenological variables (based on observations) are added. The internal variables widely used in continuum mechanics for modelling dissipative processes and the phenomenological variables used in modelling neural impulses are described and compared. The appendices describe two models of neural impulses and test problems for two classical cases: the wave equation and the diffusion equation. These test problems demonstrate the usage of phenomenological variables for describing dissipation as well as amplification.
1. Portides, D. Seeking representations of phenomena: phenomenological models. Stud. Hist. Philos. Sci., 2011, 42(2), 334–341.
https://doi.org/10.1016/j.shpsa.2010.11.041
2. Morrison, M. Models as autonomous agents. In Models as Mediators (Morgan, M. S. and Morrison, M., eds). Cambridge University Press, Cambridge, 1999, 38–65.
https://doi.org/10.1017/CBO9780511660108.004
3. Cartwright, N. How the Laws of Physics Lie. Oxford University Press, Oxford, 1983.
https://doi.org/10.1093/0198247044.001.0001
4. Engelbrecht, J. Questions About Elastic Waves. Springer, Cham, 2015.
https://doi.org/10.1007/978-3-319-14791-8
5. Heelan, P. A. Hermeneutical phenomenology and the philosophy of science. In Gadamer and Hermeneutics. Science, Culture, Literature. (Silverman, H. J., ed.). Routledge, New York, 1991, 213–228.
https://doi.org/10.4324/9781315543024-15
6. Suárez, M. The role of models in the application of scientific theories: epistemological implications. In Models as Mediators (Morgan, M. S. and Morrison, M., eds). Cambridge University Press, 1999, 168–196.
https://doi.org/10.1017/CBO9780511660108.008
7. Solari, H. G. and Natiello, M. A. Science, dualities and the phenomenological map. Found. Sci., 2024, 29, 377–404.
https://doi.org/10.1007/s10699-022-09850-4
8. Frigg, R. and Hartmann, S. Models in science. In Stanford Encyclopedia of Philosophy (Zalta, E. N., ed.). Metaphysics Research Lab, Stanford University, Stanford, 2020.
9. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of Complex Signals in Nerves. Springer, Cham, 2021.
https://doi.org/10.1007/978-3-030-75039-8
10. Hodgkin, A. L. and Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4), 500–544.
https://doi.org/10.1113/jphysiol.1952.sp004764
11. Coleman, B. D. and Gurtin, M. E. Thermodynamics with internal state variables. J. Chem. Phys., 1967, 47(2), 597–613.
https://doi.org/10.1063/1.1711937
12. Maugin, G. A. Internal variables and dissipative structures. J. Non-Equil. Thermody., 1990, 15(2), 173–192.
https://doi.org/10.1515/jnet.1990.15.2.173
13. Maugin, G. A. The saga of internal variables of state in continuum thermo-mechanics (1893–2013). Mech. Res. Commun., 2015, 69, 79–86.
https://doi.org/10.1016/j.mechrescom.2015.06.009
14. Maugin, G. A. and Muschik, W. Thermodynamics with internal variables. Part i. General concepts. J. Non-Equil. Thermody., 1994, 19(3), 217–249.
https://doi.org/10.1515/jnet.1994.19.3.217
15. Maugin, G. A. and Muschik, W. Thermodynamics with internal variables. Part ii. Applications. J. Non-Equil. Thermody., 1994, 19(3), 250–289.
https://doi.org/10.1515/jnet.1994.19.3.250
16. Eringen, A. C. Nonlinear Theory of Continuous Media. McGraw-Hill Book Company, New York, 1962.
17. Berezovski, A., Engelbrecht, J. and Maugin, G. A. Generalized thermomechanics with dual internal variables. Arch. Appl. Mech., 2011, 81(2), 229–240.
https://doi.org/10.1007/s00419-010-0412-0
18. Berezovski, A. and Ván, P. Internal Variables in Thermoelasticity. Springer, Cham, 2017.
https://doi.org/10.1007/978-3-319-56934-5
19. Raman, I. M. and Ferster, D. L. The Annotated Hodgkin and Huxley: A Reader’s Guide. Princeton University Press, Princeton, Oxford, 2021.
20. Nagumo, J., Arimoto, S. and Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962, 50(10), 2061–2070.
https://doi.org/10.1109/JRPROC.1962.288235
21. González, C., Baez-Nieto, D., Valencia, I., Oyarzún, I., Rojas, P., Naranjo, D. et al. K+ channels: function-structural overview. Compr. Physiol., 2012, 2(3), 2087–2149.
https://doi.org/10.1002/cphy.c110047
22. Connor, J. A. and Stevens, C. F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol., 1971, 213(1), 31–53.
https://doi.org/10.1113/jphysiol.1971.sp009366
23. Morris, C. and Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1), 193–213.
https://doi.org/10.1016/S0006-3495(81)84782-0
24. Deng, B. Alternative models to Hodgkin–Huxley equations. Bull. Math. Biol., 2017, 79(6), 1390–1411.
https://doi.org/10.1007/s11538-017-0289-y
25. Abbott, B. C., Hill, A. V. and Howarth, J. V. The positive and negative heat production associated with a nerve impulse. Proc. R. Soc. Lond. B, 1958, 148(931), 149–187.
https://doi.org/10.1098/rspb.1958.0012
26. Ritchie, J. M. and Keynes, R. D. The production and absorption of heat associated with electrical activity in nerve and electric organ. Q. Rev. Biophys., 1985, 18(4), 451–476.
https://doi.org/10.1017/S0033583500005382
27. Tasaki, I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR, 1988, 20(4), 251–268.
28. Tamm, K., Engelbrecht, J. and Peets, T. Temperature changes accompanying signal propagation in axons. J. Non-Equil. Thermody., 2019, 44(3), 277–284.
https://doi.org/10.1515/jnet-2019-0012
29. Peets, T., Tamm, K. and Engelbrecht, J. On the physical background of nerve pulse propagation: heat and energy. J. Non-Equil. Thermody., 2021, 46(4), 343–353.
https://doi.org/10.1515/jnet-2021-0007
30. Pennycuick, C. J. Newton Rules Biology: A Physical Approach to Biological Problems. Oxford University Press, Oxford, 1992. 31. Berezovski, A., Engelbrecht, J. and Ván, P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech., 2014, 84, 1249–1261.
https://doi.org/10.1007/s00419-014-0858-6
32. Berezovski, A. Internal variables representation of generalized heat equations. Contin. Mech. Thermodyn., 2019, 31(6), 1733–1741.
https://doi.org/10.1007/s00161-018-0729-4
33. Engelbrecht, J., Tamm, K. and Peets, T. Physics shapes signals in nerves. Eur. Phys. J. Plus, 2022, 137(6), 696.
https://doi.org/10.1140/epjp/s13360-022-02883-5
34. Nelson, P. C., Radosavljevic, M. and Bromberg, S. Biological Physics: Energy, Information, Life. W. H. Freeman and Company, New York, NY, 2003.
35. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M. and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.
https://doi.org/10.3176/proc.2017.4.28
36. Heimburg, T. and Jackson, A. D. On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett., 2007, 02(1), 57–78.
https://doi.org/10.1142/S179304800700043X
37. Engelbrecht, J., Tamm, K. and Peets, T. On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol., 2015, 14(1), 159–167.
https://doi.org/10.1007/s10237-014-0596-2
38. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore, 2003.
https://doi.org/10.1142/9789812794291
39. Engelbrecht, J. Complexity in Social Systems and Academies. Cambridge Scholars Publishing, Newcastle upon Tyne, 2021.
40. Engelbrecht, J., Tamm, K. and Peets, T. On mechanisms of electromechanophysiological interactions between the components of nerve signals in axons. Proc. Estonian Acad. Sci., 2020, 69(2), 81–96.
https://doi.org/10.3176/proc.2020.2.03
41. Bensa, J., Bilbao, S., Kronland-Martinet, R. and Smith, J. O., III. The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides. J. Acoust. Soc. Am., 2003, 114(2), 1095–1107.
https://doi.org/10.1121/1.1587146
42. Graff, K. F. Wave Motion in Elastic Solids. Originally published: Oxford University Press, London, 1975. Dover Publications, 1991.