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Abstract. Mathematical modelling of physical phenomena is based on the laws of physics, but for complicated processes, phe-
nomenological models could enhance the descriptive and prescriptive power of the analysis. This paper describes some hybrid
models, where in addition to the physics-driven part, some phenomenological variables (based on observations) are added. The
internal variables widely used in continuum mechanics for modelling dissipative processes and the phenomenological variables
used in modelling neural impulses are described and compared. The appendices describe two models of neural impulses and test
problems for two classical cases: the wave equation and the diffusion equation. These test problems demonstrate the usage of
phenomenological variables for describing dissipation as well as amplification.
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1. INTRODUCTION

Mathematical modelling is an excellent tool for describing phenomena in the real world. The famous saying
‘Mathematics is the language in which God has written the Universe’ is attributed to Galileo Galilei. Leaving
aside the physical history of the universe, the laws of nature are described mathematically and form the
cornerstones of mathematical modelling. In the philosophy of science, such models are usually called
either science-driven [1] or theoretical [2]. In many cases, however, these models represent highly idealized
cases that may even lead to the question of their applicability [3]. It is stressed that one should always
know the conditions under which these models are derived (ceteris paribus – other things being equal). To
better reflect reality, models derived from physical laws (first principles) are usually modified by introducing
additional hypotheses and combining several phenomena (cf. Cartwright [3]). For understanding wave
motion, for example, the models are derived from the conservation of momentum (Newton’s second law),
and the wave equation is one of the basic equations of mathematical physics. It is directly applicable
to the modelling of dynamical processes in elastic lossless media, but difficulties appear when one has
to account for viscoelastic, thermoelastic, plastic, etc. effects or the influence of the microstructure of a
material to processes in macroscale. The governing equations are then modified (see, for example, [4])
based on physical mechanisms. This is a developing field of modelling due to practical implications.
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It is not always possible to understand the essence of physical mechanisms, especially when several of
them are coupled. Nevertheless, observations (experiments) help to understand many aspects of processes
under investigation, which permit to describe empirical relationships between the phenomena. In this case,
a model is based on phenomenology rather than on physical theory. Portides [1] explains that such a model
compensates for the lack of knowledge ‘of how exactly and to what extent each part of a system contributes
to the latter’s investigated behaviour’. In other words, most of the system is too complex for a straightfor-
ward application of fundamental laws, which are typically composed for an idealized model system, and
phenomenological models are used to describe the relationships between the variables of the model within
the measured values.

In the philosophy of science, phenomenological ideas are based on the studies of Edmund Husserl
(1859–1938). Leaving aside his criticism towards science as an objective theory, his idea of focusing at-
tention on phenomena rather than explanations has helped us to understand the world [5]. However, as we
demonstrate in Section 3, the description of the physical basis of the phenomenology under study helps the
choice of phenomenological variables and their dynamical models.

In what follows, we shall explain some phenomenological models combining the knowledge from two
fields: continuum mechanics and neuroscience. Although the terminology is different (internal variables
and phenomenological variables, respectively), the ideology of modelling is similar. Our analysis supports
the ideas of Morrison [2] that the most effective models ‘have a rather hybrid nature’ – neither purely
theoretical (science-driven) nor phenomenological. The main criterion for such a model is its applicability,
i.e. how the derived model meets the world. Suárez [6] prefers to use the concept of ‘mediating models’.
He says: ‘Mediating models always stand between theory and the physical world.’ History is actually full of
discussions on modelling [7]. The variations of models are certainly larger than mentioned above, and the
reader is referred to the overview by Frigg and Hartmann [8] for an expanded list of models. Our analysis is
based on our studies of physical and hybrid models [4,9]. In Section 2, the concept of internal variables in
continuum mechanics is described. Further, Sections 3 and 4 are devoted to the modelling of processes in
nerves. Section 3 describes the ideas of Hodgkin and Huxley [10] on modelling the propagation of an action
potential (AP) in a single axon. In Section 4, the idea of using internal variables for modelling temperature
changes accompanying the propagation of an AP is analysed. The discussion and conclusions are presented
in Section 5. Solutions to a model problem presented in the appendices helps to understand the role of
phenomenological models describing processes in dissipative and active media.

2. INTERNAL VARIABLES IN CONTINUUM MECHANICS

The concept of internal variables has turned out to be extremely useful in describing the complex behaviour
of many physical phenomena in the framework of irreversible thermodynamics. The idea of using internal
(sometimes called hidden) variables is traced back to the studies of P. Duhem, P. Bridgman, and J. Kestin,
as well as to an early paper of Coleman and Gurtin [11]. The contemporary description of internal variables
was advocated by Gérard Maugin [12,13]. The crucial point is to distinguish between observable (e.g. strain
and temperature) and internal (hidden) variables. Maugin [13] says that internal variables ‘are supposed to
account in a more or less crude way for the complex internal microscopic processes that occur in the material
and manifest themselves at a macroscopic scale in the form of dissipation’. According to Duhem (see [13]),
internal variables in this framework have no inertia and are governed by evolution equations of the first order
in time. In a simple case, following Maugin and Muschik [14,15], the general scheme of modelling a stress
state includes observable variables χ and internal variables α . Then the law of (mechanical) state for stress
σ can be written as

σ = σ(χ,α) (1)

and the internal variable α is governed by an evolution law

α̇ = f (χ,α)+g(χ,α)χ̇, (2)



266 Proceedings of the Estonian Academy of Sciences, 2024, 73, 3, 264–278

where f (χ,α) and g(χ,α) are certain functions, and the dot denotes time derivative.
Several questions arise when applying the notion of internal variables. The first question is related to

the nature and choice of internal variables, which may be scalars, vectors or tensors. As mentioned by
Maugin [12], it ‘is a matter of decision at the outset from the scientist’. Indeed, there are many possibilities
depending on the phenomena under investigation [13]. The second and extremely important question is
related to the construction of the evolution law (2). It is proposed to use the Clausius–Duhem dissipation
potential D and derive then (2) from the dissipation inequality [12]. This means that the basis for modelling
is related to thermodynamics ‘being of a pure dissipative nature’ [13]. In other words, the second law of
thermodynamics is used that guarantees the thermodynamic compatibility. It is, however, demonstrated that,
by including inertial effects in the dissipation inequality, it is possible to distinguish between dissipative and
inertial effects [12]. This is dependent on the scales of the process, most often on the time scales related to
observable and internal variables.

The theory of internal variables has been effectively used for the analysis of viscosity, viscoplastic-
ity, damage, semi-conduction, superconductivity, ferrofluidicity, nematic liquid crystals, etc. [14,15]. Al-
though the basic theory of internal variables in continuum mechanics is well elaborated, there are many
mathematical-physical problems that require further attention. For example, in dynamics, the conservation
of momentum is the basis for deriving mathematical models [4,16]. The governing equations for observ-
able variables are then wave equations (of the hyperbolic type), but internal variables are governed by the
parabolic type of evolution laws. Such mixed hyperbolic-parabolic systems need special attention to be
solved.

In philosophical terms, the internal variables are phenomenological. A good example is damage me-
chanics [14,15], where a scalar internal variable α is introduced. The case α = 0 corresponds to the initial
state (no microcracks), and the case α = 1 means fracture. The evolution law for α in the case of ductile
damage is related to the dynamics of plasticity parameters.

In principle, the number of internal variables depends on the process. Berezovski et al. [17] have pro-
posed a concept of dual internal variables for describing the behaviour of microstructured materials. In their
model, the variations of deformation and temperature due to the microstructure are taken as internal vari-
ables, which influence the process at the macroscale. Such processes are analysed in detail by Berezovski
and Ván [18] (see also [4]). An example of deriving an evolution equation for the internal variable, starting
from the second law of thermodynamics, is presented in Appendix A.

To sum up, in continuum mechanics internal variables are widely used. The corresponding models
include the fundamental laws (first principles) together with the evolution laws for internal variables. In
other words, a science-driven model is combined with additional assumptions or observations to form a
hybrid model to better capture observable reality.

3. PROPAGATION OF AN ACTION POTENTIAL

In electrophysiology, the celebrated Hodgkin–Huxley (HH) model describes the propagation of an action
potential in a single axon [10]. This is an excellent example of using phenomenological variables, and
we describe the modelling idea in more detail than the usage of internal variables in continuum mechanics
(Section 2).

An axon can be modelled as a tube in a certain environment (extracellular fluid). The wall of the
tube is composed of amphiphilic phospholipids (a biomembrane), and inside the tube is the axoplasmic
fluid, shortly axoplasm. Since the concentrations of ions (mostly Na+ and K+) in the extracellular fluid and
axoplasm are different, there is a net voltage difference between the inside and outside of a cell. Equilibrium
potentials for each type of ion are calculated from the Nernst equation (see Appendix B). The axon wall
contains ion channels through which several types of ions can pass from the inside to the environment and
vice versa. The ion currents, i.e. the flow through these channels, regulate the shape of the propagating AP.
Hodgkin and Huxley [10] measured the AP and proposed a mathematical model that describes how the AP
is evolving in time in a giant axon of the giant squid.
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AP is an electrical signal propagating along the axon and governed by a cable equation, where inductance
is neglected but the membrane current I as a driving component has been added. This current has according
to the HH model four components: capacitive current IC, ion currents of potassium IK and sodium INa, and
a leakage current Il (consisting mainly of Cl− ions):

I =CM
dV
dt

+ INa + IK + Il, (3)

where CM is the membrane capacity, V is the displacement of the membrane potential from its resting value
and t is time. It means that only two ion currents are specified as sodium and potassium ions, and all the other
possible currents are denoted as leakage. Following the experiments, Hodgkin and Huxley understood that
a fast inward current was carried by Na+ ions, and a more slowly activated outward current was carried by
K+ ions. The ingenious proposal by Hodgkin and Huxley [10] was to introduce phenomenological variables
n, m and h related to IK and INa. It is extremely interesting and educational to follow the formation of their
idea (see also remarks by Raman and Ferster [19]).

For the potassium conductance gK , it was proposed:

gK = n4ḡK , (4)
dn
dt

= αn(1−n)−βnn, (5)

where ḡK is a constant and ‘n is a dimensionless variable that can vary between 0 and 1’ [10].
The explanation of why these assumptions were made is worth repeating here because they demonstrate

clearly what such a choice means. Hodgkin and Huxley explain [10]: ‘These equations may be given a
physical basis if we assume that potassium ions can only cross the membrane when four similar particles
occupy a certain region of the membrane. n represents the proportion of the particles in a certain position
(for example at the inside of the membrane) and 1−n represents the proportion that are somewhere else (for
example at the outside of the membrane). αn determines the rate of transfer from outside to inside, while βn
determines the transfer in the opposite direction.’

The description of sodium conductance needs activation and inactivation to be taken into account. It
was proposed:

gNa = m3hḡNa, (6)
dm
dt

= αm(1−m)−βmm, (7)

dh
dt

= αh(1−h)−βhh, (8)

where ḡNa is a constant and αm, βm, αh, βh are the rate constants.
Here Hodgkin and Huxley [10] chose two variables m and h because ‘it was simpler to apply to the

experimental results’ (rather than choosing one variable but governed by a second-order equation). Again,
an explanation for these assumptions [10] is the following: ‘These equations may be given a physical basis if
sodium conductance is assumed proportional to the number of sites on the inside of the membrane which are
occupied simultaneously by three activating molecules but are not blocked by an inactivating molecule. m
then represents the proportion of activating molecules on the inside and 1−m the proportion on the outside;
h is the proportion of inactivating molecules on the outside and 1−h the proportion on the inside.’

The HH model is an excellent example of using observation for phenomenological description. Attention
must be paid to the idea that the phenomenological variables are included in a combination (n4 and m3h) that
is directly related to the assumptions based on the physical phenomena, as the quotations above demonstrate.

The next step in the modelling was to determine the rate constants in Eqs (5), (7) and (8). This was done
by a careful fitting of theoretical curves to the experiments [10]. Note that the expressions for rate constants
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correspond to the experiment of a giant axon of a squid at a fixed temperature (in the HH experiment,
6.3◦ C). The full HH model is presented in Appendix B.

Every phenomenological model raises questions about its applicability. The ionic hypothesis (referred
to as conductance-based modelling) proposed by Hodgkin and Huxley [10] has turned out to be widely
applicable. Although clearly justified and based on observations, the number of parameters in the HH
model is high. It is quite natural that one might think about reducing the number of parameters. In this
context, a simplified model known as the FitzHugh–Nagumo (FHN) model must be mentioned [20], which
includes only one abstracted ionic (recovery) current. In the original notation, it reads:

h
∂ 2u
∂ s2 =

1
c

∂u
∂ t

−w−
(

u− u3

3

)
, (9)

c
∂w
∂ t

+bw = a−u, (10)

where s is the distance along the axon, u is the voltage, and w is the recovery current. Constants h, c, b, a
are positive. Compared with the HH model, variable w corresponds to h and n, while m is embedded in the
nonlinearities of Eq. (9). Although the coefficients are not specified for the concrete nerve, the FHN model
can describe the characteristics of the AP, such as the existence of a threshold, the asymmetric shape of the
AP, the overshoot and the existence of the refraction length.

Contemporary experiments have revealed many structural complexities and the molecular specifics of
ion channels [21]. It is a real challenge to include more details in the modelling to enhance the predictive
power of modelling, while keeping the models simple enough to be practical.

Connor and Stevens [22] have proposed a model similar to the HH model, but specifying different inward
II and outward IK , IA ion currents. In their study, all currents were described by two phenomenological
variables, which may include activation and inactivation terms. Morris and Lecar [23] have included Ca2+

ions in their model and proposed the corresponding rate equations. Deng [24] has proposed a model where
n4 and m3h of the HH model were replaced simply by the influence of n, m and h. Actually, all these
studies demonstrate the special character of phenomenological modelling: the choice of phenomenological
variables depends on the researcher. Hodgkin and Huxley [10] noted: ‘ ... our equations are anything more
than an empirical description of the time-course of the changes in permeability to sodium and potassium. An
equally satisfactory description of the voltage clamp data could no doubt have been achieved with equations
of very different form...’. The freedom of choice by a researcher was also stressed by Maugin [12] in the
case of internal variables used in continuum mechanics.

4. HEAT PRODUCTION IN AXONS

It has been demonstrated in several experiments that the propagation of an AP in an axon is accompanied by
the generation and absorption of heat and temperature changes [25–27]. These processes are complicated
and need attention not only because of the temperature changes (which are small) but mostly to understand
the general energy balance in nerves. The possible mechanisms of heat production can be explained by
Joule heating (energy transfer from the electrical current to thermal effects) and also by energy transfer from
mechanical waves in the biomembrane and axoplasm into the temperature increase. In addition, Abbott et
al. [25] proposed that ‘... the positive heat is due to exothermic chemical reactions ... and the negative heat to
endothermic reactions’. It is clear that a combination of these mechanisms is possible. While the interaction
of electric-thermal and mechanical-thermal effects is understood, the chemical-thermal interaction in nerves,
in the context of nerve pulse propagation, has been more or less a hypothesis by Abbott et al. [25]. Recently,
a phenomenological model of this phenomenon has been proposed by Tamm et al. [28] by using the concept
of internal variables.

The temperature change in an axon is governed by the Fourier law, and the basic heat equation can be
used with a driving force:

ΘT = αΘXX +F(Z,J,P,U), (11)
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where Θ is the temperature, α is the thermal diffusivity, F is a driving force, Z is the potential (AP), J is
the combined ion current, P is the pressure in the axoplasm and U is the longitudinal density change in
the biomembrane, while X and T are dimensionless space and time, respectively. Indices X and T denote
differentiation.

It was proposed that the part of the driving force Fchem that is related to chemical reactions has a simple
form

Fchem =−τΩ, (12)

where τ is a physical coefficient and Ω is the internal variable. The internal variable Ω is governed by an
evolution equation (cf. Eq. (2))

ΩT + εΩ = ζ J, (13)

where ε , ζ are coefficients and J is the ionic current from the AP model.
The fitting of the coefficients against experimentally measured temperature profiles [25] gave satisfac-

tory results in the dimensionless form [28,29]. It was possible to distinguish slower and faster relaxation to
the equilibrium state and to compare the influence of various mechanisms of heat production. In principle,
it is possible to separate endo- and exothermic processes by introducing two internal variables Ωen and Ωex,
but then fitting the parameters to experimental results will be more difficult. However, such an analysis may
help to better understand the physics behind the phenomenon.

This mechanism is part of a coupled model, which describes the propagation of a wave ensemble in a
single axon [9]. The full model, including all the electric, mechanical and thermal effects, is presented in
Appendix C.

5. DISCUSSION AND CONCLUSIONS

Above, we have elaborated some problems of phenomenological modelling, which were raised in Intro-
duction. The usage of internal variables in continuum mechanics and phenomenological parameters in
electrophysiology were briefly analysed. Both concepts, despite the used terminology, are related to the
phenomenological modelling of physical phenomena, and the terminology is different due to the various
scientific communities.

Both concepts stress the role of a researcher in choosing the variables for the phenomenological descrip-
tion (see Hodgkin and Huxley [10] and Maugin [12]). Such a choice is described in detail by Raman and
Ferster [19] in their comments to the basic papers of Hodgkin and Huxley. Although the choice by Hodgkin
and Huxley [10] turned out to work well, there was still a question ‘whether there are any unexplained
observations which have been neglected in an attempt to make experiments fit into a tidy pattern’ [10].

The distinction between observable and internal variables is very clearly stressed by Maugin [12,13],
and this is a clear sign that, in practice, the best results are obtained by using hybrid models. As analysed by
Morrison [2], hybrid models include science-driven (theoretical) and descriptive (phenomenological) parts.
This is evident from our examples (see Appendix B and Appendix C). An interesting question is to find
a proper balance between the observable and phenomenological variables. In modelling the processes in
nerves, it is clear that physics shapes the signals in nerves [30,33], and phenomenology is used to describe
the processes (ion currents, heat production) where the present knowledge is not sufficient to elaborate
physics-based models.

A difference between these two concepts is in constraints, which, in some sense, are based on initial
studies. In continuum mechanics, Maugin [12,13] has characterized internal variables as an important con-
cept for describing dissipative processes. Based on the earlier studies of Duhem and Gibbs, Maugin [13]
stresses the role of thermodynamics in the processes with internal variables and presents the thermodynamic
framework for the analysis. In electrophysiology, Hodgkin and Huxley [10] have used phenomenological
variables for describing the activation and inactivation of an AP. This means that phenomenological mod-
elling can be used for energy influx as well as for energy outflux. Although the HH model gives excellent
results proven by many experiments, the contemporary understanding about the role of various ion channels
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(see, for example, Gonzáles et al. [21]) calls for modifications to this celebrated model. Regardless of the
modifications, the principle of activation and inactivation must be followed.

The phenomenological models are certainly descriptive, but, as said by Morrison [2], they ‘are able to
mediate between theory and the world and intervene in both domains’. To model observation is not an easy
problem – a researcher must have a sharp eye and understand the issue. In Appendix D, it is demonstrated
that physical modelling and phenomenological modelling give similar results when properly calibrated.

One thing is clear: the more we understand the physics and chemistry of various fields, the more we
understand the observations that happen in continuum mechanics or electrophysiology, with phenomenolog-
ical modelling being one tool for better understanding. However, when using phenomenological variables,
special attention must be paid to the calibration and interpretation of rate constants, like Hodgkin and Hux-
ley [10] did for the modelling of ion currents. This means that the application of a derived model is restricted
to a concrete case.

Basically, the idea of using internal variables is to describe a process that is either unknown, too compli-
cated for an easy description or hidden from direct observations but has an observable effect on the processes
that can be measured or modelled. It should be stressed that if the internal or phenomenological variables
are introduced in a given model, it is important to clearly state the underlying assumptions made when
introducing them.
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APPENDIX A

AN EXAMPLE FROM CONTINUUM MECHANICS

As an example, it is demonstrated how thermodynamical considerations permit us to derive governing equa-
tions for the internal variable within the framework of continuum mechanics. The example models heat
conduction in a microstructured material, where the internal variable α describes the influence of changes
in temperature due to microstructure. The model is described in detail in [31,32], here the main idea is
presented.

The second law of thermodynamics can be written as

St +∇ ·S ≥ 0, S =
Q
T
+K, (14)

where S is the entropy density per unit volume, S is the entropy flux, Q is the heat flux, T is the absolute
temperature and K is the extra entropy flux (that vanishes in most cases). Index t means differentiation with
respect to time t. The dissipation inequality follows from Eq. (14):

STt +S ·∇T ≤ hint +∇ · (T K), (15)

where hint =−Wt , and W is the Helmholtz free energy. The free energy is proposed to include temperature
T and the internal variable α:

W =W (T,α,∇α). (16)
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Leaving the details aside (see [32]) for the quadratic free energy (16) and linear thermodynamic fluxes,
the evolution equation governing the behaviour of the internal variable α is derived from the dissipation
inequality (15):

αt = M11T (C∇
2
α −Bα)−M12∇T, (17)

where B and C are material parameters, and M11, M12 are constants characterizing thermodynamic forces. It
is obvious that the changes in α are driven by the temperature gradient. The heat conduction equation now
takes the form

ρcpTt −M22∇
2T =−M21∇ · [T0(c∇

2
α −Bα)], (18)

where ρ is the density and cp is the heat capacity. The constants M22 and M21 characterize thermodynamic
forces. Equation (18) has a clear structure: the LHS models the classical heat conduction, while the RHS
models the influence of the microstructure. If α = 0, then the result is a standard heat conduction equation.

APPENDIX B

THE HODGKIN–HUXLEY MODEL

In the following, the full Hodgkin–Huxley (HH) model [10,19] is presented. The total current I across the
membrane is given by

I =CM
dV
dt

+ ḡKn4 (V −VK)+ ḡNam3h(V −VNa)+ ḡl (V −Vl) , (19)

where V is the displacement of the membrane potential from its resting value, CM is the membrane capacity
per unit area and VK , VNa, Vl denote equilibrium potentials of the potassium, sodium and leakage (chloride
and other) ions. Ionic permeability of the membrane is expressed in terms of ionic conductances (gK , gNa
and gl).

The equilibrium potentials Vion for each type of ion satisfy the Nernst equation:

Vion =
kBT

q
ln
(
[outside]ion

[inside]ion

)
, (20)

where q is the charge of the ion, kB is the Boltzmann constant, T is absolute temperature, and [outside]ion,
[inside]ion denote extra- and intracellular concentrations of a given ion.

Opening and closing of the ion channels is modelled by phenomenological parameters n (K ‘turning
on’), m and h (Na ‘turning on’ and ‘turning off’, respectively). These dimensionless parameters are in the
interval from zero to one and are determined from the following kinematic equations:

dn
dt

= αn(1−n)−βnn, (21)

dm
dt

= αm(1−m)−βmm, (22)

dh
dt

= αh(1−h)−βhh. (23)
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The expressions for the parameters αi and βi have been calibrated experimentally [10]:

αn =
0.01(V +10)

exp
(V+10

10

)
−1

, (24)

βn = 0.125exp
(

V
80

)
, (25)

αm =
0.1(V +25)

exp
(V+25

10

)
−1

, (26)

βm = 4exp
(

V
18

)
, (27)

αh = 0.07exp
(

V
20

)
, (28)

βh =
1

exp
(V+30

10

)
+1

. (29)

The expressions for αi and βi are appropriate to the temperature of 6.3◦ C in the giant squid axon. For other
temperatures, the right side of Eqs (15) and (16) must be scaled by a factor

φ = Q(T−Tbase)/10
10 . (30)

Here Q10 is the ratio of the rates for an increase in temperature of 10◦ C. For the squid axon Tbase = 6.3◦ C
and Q10 = 3.

From cable theory, it is known that the membrane current per unit length i is given by

i =
1

r1 + r2

∂ 2V
∂x2 , (31)

where r1 and r2 are the external and internal resistances per unit length, and x is the distance along the fibre.
Since for a large volume of conducting fluid, r1 is negligible compared to r2, (31) can be rewritten as

I =
a

2R2

∂ 2V
∂x2 , (32)

where a is the radius of the fibre, and R2 is the specific resistance of the axoplasm. Combining Eq. (32) with
Eq. (19), a second-order partial differential equation describing an evolution of AP is derived:

a
2R2

∂ 2V
∂x2 =CM

dV
dt

+ ḡKn4 (V −VK)+ ḡNam3h(V −VNa)+ ḡl (V −Vl) . (33)

This is a hybrid model based on fundamental principles and phenomenology (variables n, m, h). Nelson
[34] calls the HH model ‘as one of the most beautiful and fruitful examples of what can happen when we
apply the tools and ideas of physics to a biological problem’.

APPENDIX C

THE COUPLED MODEL

In Section 3, an overview of modelling of the AP is given. In Section 4, it is described how to use the
concept of internal variables for modelling heat production in axons. Engelbrecht et al. [9] have proposed
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a coupled model for describing the propagation of an AP and its accompanying mechanical and thermal
effects. Here, we briefly present the mathematical details of the model in a dimensionless form [9].

The AP is governed by the FitzHugh–Nagumo (FHN) model [20]:

ZT = DZXX − J+Z
(
Z −C1 −Z2 +C1Z

)
,

JT = ε1 (C2Z − J) .
(34)

Here, Z is the AP, J is the ion current, D is a coefficient, ε is the time-scale difference parameter and
Ci = ai +bi, where ai is the ‘electrical’ activation coefficient and bi = −βiU is the ‘mechanical’ activation
constant; βi are coupling coefficients. Here and further, indices T and X denote partial derivates against
dimensionless time and space, respectively. Note that here the ion current J also plays a role in the evolution
of an internal variable (cf. Eq. (2)).

The pressure wave (PW) is governed by a modified wave equation (the wave equation with viscous and
coupling terms):

PT T = c2
2PXX −µ2PT +F2(Z,J), (35)

where P is the pressure, c2 is the characteristic velocity in fluid, µ2 is the viscous coefficient and F2 models
the influence from the AP.

The longitudinal wave (LW) in the biomembrane is governed by the improved Heimburg–Jackson (iHJ)
model [35,36]:

UT T = c2
3UXX +NUUXX +MU2UXX +NU2

X +2MUU2
X

−H1UXXXX +H2UXXT T −µ3UT +F3(Z,J,P),
(36)

where U = ∆ρ is the longitudinal density change, c3 is the velocity of sound in an unperturbed state, N,M
are nonlinear coefficients and Hi are dispersion coefficients, µ3 is a viscosity/friction coefficient, and F3
models the influence from the AP and PW.

The transverse displacement (TD) of the biomembrane is calculated from the LW as W ∝ UX (drawing
inspiration from the theory of rods) [37,38]:

W = KUX , (37)

where K is a coefficient.
The temperature Θ is governed by the classical heat equation with a coupling term:

ΘT = kΘXX +F4(Z,J,U,P), (38)

where Θ is the temperature, k is the thermal conductivity coefficient, and F4 models the influence from the
AP, LW and PW.

Coupling forces based on the ideas presented in [39,40] are the following:

F2 = η1ZX +η2JT +η3ZT , (39)

F3 = γ1PT + γ2JT − γ3ZT , (40)

F4 = τ11Z2 + τ2 (PT +ϕ2(P))+ τ3 (UT +ϕ3(U))− τ4Ω, (41)

where ηi, γi and τi are coefficients. Following the formalism of internal variables, Ω is determined either
from

ΩT + ε4Ω = ζ J (42)

or
ΩT = ϕ4(J)−

Ω−Ω0

τΩ

, Ω0 = 0, τΩ =
1
ε4
, (43)
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where

ϕ2(P) = λ2

∫
PT dT, ϕ3(U) = λ3

∫
UT dT, ϕ4(J) = ζ

∫
J dT (44)

and ε4, τΩ, λi and ζ are coefficients.
Temperature effects are governed by a hybrid model, partly describing the physics, partly the chemical

reactions using phenomenology (internal variable Ω). Numerical simulations [9,28] have demonstrated
qualitatively a good correspondence to the experimental results.

APPENDIX D

TEST PROBLEMS

Here we present simple dimensionless model problems to demonstrate the use of internal variables for
modelling some basic phenomena. We start by demonstrating how phenomenological modelling could
be used for modelling dissipative wave propagation. It is well known that dissipation can be modelled
by introducing dissipative terms in the stress-strain relation [4]. Then the one-dimensional dimensionless
equation of motion is

utt − c2uxx =−k1ut + k2utxx, (45)

where c is the wave speed and k1,k2 > 0 are coefficients. Here and further, the indices denote differentia-
tion with respect to coordinate x and time t, respectively. With an additional fourth-order dispersive term,
Eq. (45) can be used for modelling transverse wave propagation in a piano string [41]. With k2 = 0, Eq. (45)
models a string on a viscous subgrade [42], and with k1 = 0, viscoelastic effects in solids [38].

The initial value problem with a sech2(x)-type initial pulse is posed for Eq. (45) and solved numeri-
cally using the NDSolve function in Wolfram Mathematica with the following initial conditions at t = t0:
u(x, t0) = sech2(x), ∂

∂ t u(x, t0) = 0 and Ω(x, t0) = 0. The effect of both dissipative terms is demonstrated in
Fig. 1.

The same process can be modelled by using the concept of internal variables. To this end, a dimension-
less wave equation with forcing can be used:

utt − c2uxx = f (x, t), (46)

where f (x, t) is an external forcing and the forcing itself depends on the internal variable Ω:

f (x, t) =±τΩ, (47)

where τ is a coefficient. In the following example, the internal variable is governed by the equation

Ωt = uxx −Ω. (48)

The solution to the system (46)–(48) with the initial conditions u(x, t0) = sech2(x), ∂

∂ t u(x, t0) = 0,
Ω(x, t0) = 0 is shown in Fig. 2. It can be seen that the concept of internal variables can be used for modelling
dissipation (with f (x, t) =−τΩ) and amplification (with f (x, t) = τΩ). In mathematical terms, amplifica-
tion may lead to stability loss. So, special attention must be devoted to the constraints of the process through
stability analysis.

For a second example, we demonstrate how the concept of internal variables can be used for modelling
heat propagation in the presence of an additional process. A dimensionless heat equation with additional
forcing is used:

ut −αuxx = f (x, t), (49)
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Fig. 1. Solutions to the dissipative wave equation (45). The effect of the term ut (k1 = 0.01, k2 = 0) is demonstrated in the left
panel; the effect of the term utxx (k1 = 0, k2 = 0.01) is demonstrated in the right panel. The pulses propagate to the right, profiles
at dimensionless times t1 = 10, t2 = 30, t3 = 50 are shown, and c = 1 for both cases.
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Fig. 2. Solutions to the system (46)–(48) in the case of f (x, t) = −τΩ (left panel) and f (x, t) = τΩ (right panel). The pulses
propagate to the right, and profiles at dimensionless times t1 = 10, t2 = 30, t3 = 50 are shown. c = 1 and τ = 0.02 for both cases.

where α is a coefficient and f (x, t) =±τΩ is the external influence. This term can be interpreted as a source
term that models a process either adding or removing energy from the system. In this example, the internal
variable Ω is governed by

ΩT + εΩ = 0, (50)

where ε is a coefficient. Note that Eq. (49) is taken similar to Eq. (42) in the coupled model (Appendix C).
The difference is that in the case of the coupled model, evolution of the internal variable Ω is influenced by
the AP through the ionic current J. In the test problem, we use a sech2-type initial condition for Ω.

The system (49)–(50) is solved numerically with the initial conditions u(x, t0) = sech2(x), Ω(x, t0) =
sech2(x) for three values of τ: τ = 0 corresponds to the case of classical heat equation (reference case),
τ < 0 and τ > 0. The solutions to the system (49)–(50) are depicted in Fig. 3, where it can be seen that
with different values of parameter τ , the process governed by Eq. (49) can be made slower or faster. This is
also demonstrated in Fig. 4, where amplitude changes at x = 0 are shown in time. Such a possibility stems
exactly from the structure of the governing equation (50) of the internal variable (cf. also the kinematic
equations (21)–(23)). For the heat production in nerves (Section 4), such a model permits distinguishing
slower (exothermic external influence) and faster (endothermic external influence) relaxation compared to
the classical heat equation (τ = 0).
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Fig. 3. Solutions to the system (46)–(48) in the case of f (x, t) = 0 (solid line), f (x, t) = −τΩ (dashed line) and f (x, t) = τΩ

(dot-dashed line). For all cases α = 0.25, ε = 0.1 and τ = 0.05. Initial profile is depicted in light grey and solutions are shown at
dimensionless time t = 30.
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Fig. 4. Amplitude changes in time for the test problem (49)–(50) depicted in Fig. 3 at x = 0.

These test problems of the classical wave equation and diffusion equation demonstrate clearly that by
adding phenomenological (internal) variables, several modified processes can be described.
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Füüsikaliste nähtuste fenomenoloogilisest modelleerimisest

Jüri Engelbrecht, Kert Tamm ja Tanel Peets

Füüsikaliste nähtuste modelleerimisel ei piisa teinekord füüsikaseadustest ja tuleb kasutada vaatlustel põhi-
nevaid kirjeldusi. Pideva keskkonna mehaanikas kasutatakse sisemuutujate mõistet, neuroteaduses närviim-
pulsside levi modelleerimisel aga fenomenoloogilisi muutujaid. Artiklis analüüsitakse nende mudelite sar-
nasusi ja erinevusi. Kui pideva keskkonna mehaanikas on tähelepanu dissipatiivsetel protsessidel, siis närvi-
impulsside modelleerimisel tuleb arvestada aktsioonipotentsiaali võimendusega ja tekkiva temperatuuri re-
laksatsiooniga. Mõlemal juhul on võimalik kasutada fenomenoloogilisi muutujaid. Analüüsist järeldub, et
tihti on otstarbekas kasutada hübriidmudeleid, kus füüsikalistele seaduspärasustele on lisatud mõne protsessi
fenomenoloogiline, vaatlustel põhinev kirjeldus. Artikli lisades on kirjeldatud konkreetseid närviimpulsside
mudeleid ning testprobleeme hüperboolsete (laine tüüpi) ja paraboolsete (difusioonitüüpi) võrrandite analüü-
simisel, kui lisatud on fenomenoloogiline muutuja. Need probleemid demonstreerivad ilmekalt fenomeno-
loogiliste muutujate paindlikkust nii dissipatsiooni kui ka võimenduse modelleerimisel.
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