ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Novel concepts in linear Diophantine fuzzy graphs with an application; pp. 228–248
PDF | https://doi.org/10.3176/proc.2024.3.07

Authors
Xiaolong Shi, Maryam Akhoundi, Hossein Rashmanlou, Masomeh Mojahedfar
Abstract

The linear Diophantine fuzzy graph (LDFG) notion serves as a new mathematical approach for the ambiguity and uncertainty modeling in decision-making issues. An LDFG eliminates the strict limitations of various existing graphs. The energy concept in graph theory is one of the most attractive topics that is very important in biological and chemical sciences. The article aims at developing the notion of fuzzy graphs (FG) towards LDFGs, and, also, we extend the energy notion of an FG to the energy of an LDFG and use the concept of energy to model problems linked to the LDFG. To fulfill such a purpose, we make an LDFG and investigate the effectiveness of that part by calculating the concept of energy on this LDFG. We define the LDFG adjacency matrix (AM) concept and the energy of an LDFG. Also, we introduce the new Laplacian energy (LE) concept of an LDFG and investigate its properties. Finally, an application of the LDFG energy to find the most effective component in the hospital information system has been presented.

References

1. Zadeh, L. A. Fuzzy set. Inf. Control., 1965, 8, 338–353.
https://doi.org/10.1016/S0019-9958(65)90241-X

2. Kaufmann, A. Introduction à la théorie des sous-ensembles flous (Introduction to Fuzzy Subset Theory). Masson et Cie, Paris, France, 1973.

3. Gutman, I. The energy of a graph. Ber. Math. Statist. Sekt. Forschungszentram Graz., 1978, 103, 1–22.

4. Brualdi, R. A. Energy of a graph. Notes to AIM workshop on spectra of families of atrices described by graphs, digraphs, and sign patterns, 2006.

5. Liu, H., Lu, M. and Tian, F. Some upper bounds for the energy of graphs. J. Math. Chem., 2007, 41, 45–57.
https://doi.org/10.1007/s10910-006-9183-9

6. Gutman, I. The energy of a graph: old and new results. In Algebraic Combinatorics and Applications (Betten, A., Kohnert, A., Laue, R. and Wassermann, A., eds). Springer, Berlin, Heidelberg, 2001, 196–211.
https://doi.org/10.1007/978-3-642-59448-9_13

7. Anjali, N. and Sunil, M. Energy of a fuzzy graph. Ann. Fuzzy Math. Inform., 2013, 6, 455–465.

8. Praba, B., Chandrasekaran, V. M. and Deepa, G. Energy of an intuitionistic fuzzy graph. Ital. J. Pure Appl. Math., 2014, 32, 431–444. 

9. Naz, S., Ashraf, S. and Karaaslan, F. Energy of a bipolar fuzzy graph and its application in decision making. Ital. J. Pure Appl. Math., 2018, 40, 339–352. 

10. Shi, X., Kosari, S., Talebi, A. A., Sadati, S. H. and Rashmanlou, H. Investigation of the main energies of picture fuzzy graph and its applications. Int. J. Comput. Intell. Syst., 2022, 15, 31. 
https://doi.org/10.1007/s44196-022-00086-5

11. Yager, R. R. Pythagorean fuzzy subsets. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013. IEEE, 2013, 57–61.
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

12. Yager, R. R. and Abbasov, A. M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst., 2013, 28, 436–452. 
https://doi.org/10.1002/int.21584

13. Riaz, M. and Hashmi, M. R. Linear Diophantine fuzzy set and its applications towards multiattribute decision-making problems. I. Intell. Fuzzy Syst., 2019, 37, 5417–5439. 
https://doi.org/10.3233/JIFS-190550

14. Riaz, M., Hashmi, M. R., Kulsoom, H., Pamucar, D. and Chu, Y. M. Linear Diophantine fuzzy soft rough sets for the selection of sustainable material handling equipment. Symmetry, 2020, 12, 1–39. 
https://doi.org/10.3390/sym12081215

15. Kamaci, H. Linear Diophantine fuzzy algebraic structures. J. Ambient Intell. Humaniz. Comput., 2021, 12, 10353–10373.
https://doi.org/10.1007/s12652-020-02826-x

16. Ayub, S., Shabir, M., Riaz, M., Aslam, M. and Chinram, R. Linear Diophantine fuzzy relations and their algebraic properties with decision making. Symmetry, 2021, 13(6), 945. 
https://doi.org/10.3390/sym13060945

17. Hanif, M. Z., Yaqoob, N., Riaz, M. and Aslam, M. Linear Diophantine fuzzy graphs with new decision-making approach. AIMS Math., 2022, 7(8) 14532–14556. 
https://doi.org/10.3934/math.2022801

18. Gutman, I. and Zhou, B. Laplacian energy of a graph. Linear Algebra Appl., 2006, 414(1), 29–37.
https://doi.org/10.1016/j.laa.2005.09.008

19. Qiang, X., Akhoundi, M., Kou, Z., Liu, X. and Kosari, S. Novel concepts of domination in vague graphs with application in medicine. Math. Probl. Eng., 2021, 10.
https://doi.org/10.1155/2021/6121454

20. Kosari, S., Shao, Z., Shi, X., Sheikholeslami, S. M., Chellali, M., Khoeilar, R. et al. Cubic graphs have paired-domination number at most four-seventh of their orders. Discreet Math., 2022, 345(12).
https://doi.org/10.1016/j.disc.2022.113086

21. Kou, Z., Kosari, S. and Akhoundi, M. A novel description on vague graph with application in transportation systems. J. Math., 2021, 4800499
https://doi.org/10.1155/2021/4800499

22. Shi, X. and Kosari, S. Certain properties of domination in product vague graphs with an application in medicine. Front Phys., 2021, 9
https://doi.org/10.3389/fphy.2021.680634

23. Rao, Y., Kosari, S., Shao, Z., Qiang, X., Akhoundi, M. and Zhang, X. Equitable domination in vague graphs with application in medical sciences. Front Phys., 2021, 9, 635–642.
https://doi.org/10.3389/fphy.2021.635642

24. Rao, Y., Kosari, S., Shao, Z., Cai, R. and Xinyue, L. A Study on domination in vague incidence graph and its application in medical sciences. Symmetry, 2020, 12(11), 1885.
https://doi.org/10.3390/sym12111885

25. Naz, S., Ashraf, S. and Akram, M. A novel approach to decision-making with Pythagorean fuzzy information, 2018, 6(6), 95.
https://doi.org/10.3390/math6060095

26. Iampan, A., García, G. S., Riaz, M., Farid, H. M. A. and Chinram, R. Linear Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems. J. Math., 2021, 31, 5548033.
https://doi.org/10.1155/2021/5548033

27. Izatmand, Mahmood, T., Ali, Z., Aslam, M. and Chinram, R. Generalized hamacher aggregation operators based on linear Diophantine uncertain linguistic setting and their applications in decision-making problems. IEEE Access, 2021, 9, 126748–126764.
https://doi.org/10.1109/ACCESS.2021.3110273

28. Riaz, M., Farid, H. M. A., Wang, W. and Pamucar, D. Interval-valued linear Diophantine fuzzy Frank aggregation operators with multi-criteria decision-making. Mathematics, 2022, 10(11), 1811.
https://doi.org/10.3390/math10111811

29. Mohammad, M. M. S., Abdullah, S. and Al-Shomrani, M. M. Some linear Diophantine fuzzy similarity measures and their application in decision-making problem. IEEE Access, 2022, 10, 29859–29877.
https://doi.org/10.1109/ACCESS.2022.3151684

30. Muhiuddin, G., Al-Tahan, M., Mahboob, A., Hoskova-Mayerova, S. and Al-Kaseasbeh, S. Linear Diophantine fuzzy set theory applied to BCK/BCI-algebras. Mathematics, 2022, 10(12), 2138.
https://doi.org/10.3390/math10122138

31. Borzooei, R. A. and Rashmanlou, H. Ring sum in product intuitionistic fuzzy graphs. Int. J. Adv. Res., 2015, 7(1), 16–31.
https://doi.org/10.5373/jarpm.1971.021614

32. Talebi, A. A., Ghassemi, M. and Rashmanlou, H. New concepts of irregular-intuitionistic fuzzy graphs with applications. Ann. Univ. Craiova Math., 2020, 47(2), 226–243.

33. Talebi, A. A., Ghassemi, M., Rashmanlou, H. and Broumi, S. Novel properties of edge irregular single valued neutrosophic graphs. Neutrosophic Sets Syst., 2021, 43, 255–279.

34. Kosari, S., Shao, Z., Rao, Y., Liu, X., Cai, R. and Rashmanlou, H. Some types of domination in vague graphs with application in medicine. J. Mult.-Valued Log. Soft Comput., 2023, 40, 203–219.

35. Akram, M. and Naz, S. Energy of Pythagorean fuzzy graphs with applications. Mathematics, 2018, 6(8), 136.
https://doi.org/10.3390/math6080136

36. Akram, M., Gani, A. N. and Saeid, A. B. Vague hypergraphs. J. Intell. Fuzzy Syst., 2014, 26(2), 647–653.
https://doi.org/10.3233/IFS-120756

37. Poulik, S. and Ghorai, G. Certain indices of graphs under bipolar fuzzy environment with applications. Soft Comput., 2020, 24, 5119–5131.
https://doi.org/10.1007/s00500-019-04265-z

38. Poulik, S. and Ghorai, G. Detour g-interior nodes and detour g-boundary nodes in bipolar fuzzy graph with applications. Hacettepe J. Math. Stat., 2020, 49(1), 106–119.
https://doi.org/10.15672/HJMS.2019.666

39. Poulik, S. and Ghorai, G. Determination of journeys order based on graph’s Wiener absolute index with bipolar fuzzy information. Inf. Sci., 2021, 545, 608–619.
https://doi.org/10.1016/j.ins.2020.09.050

40. Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T. et al. A study of plithogenic graphs: applications in spreading coronavirus disease (COVID-19) globally. J. Ambient Intell. Human. Comput., 2023, 14, 13139–13159. 
https://doi.org/10.1007/s12652-022-03772-6

41. Yaqoob, N., Gulistan, M., Kadry, S. and Wahab, H. A. Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics, 2019, 7(1), 35. 
https://doi.org/10.3390/math7010035

42. Gulistan, M., Yaqoob, N., Rashid, Z., Smarandache, F. and Wahab, H. A. A study on neutrosophic cubic graphs with real life applications in industries. Symmetry, 2018, 10(6), 203. 
https://doi.org/10.3390/sym10060203

43. Smarandache, F., Broumi, S., Bakali, A. and Talea, M. Complex neutrosophic graphs of type 1. In 2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA), Gdynia Maritime University, Gdynia, Poland, 3–5 July 2017. Zenodo, 2017.

Back to Issue