Fragments that have an irregular shape and move at high speeds are difficult to assess since experiments require high-tech solutions, and the differential equations that describe the motion cannot be solved analytically. Different numerical and function approximation methods are used to find the trajectory model. This work uses a state-of-the-art, higher order Haar wavelet method to approximate the trajectory model with empirically determined drag force. The initial conditions of the flight of the fragments are determined by the finite element method. The results obtained by utilizing the Haar wavelet method and the higher order Haar wavelet method are compared. The higher order Haar wavelet method outperforms the Haar wavelet method but allows for keeping the implementation complexity of the method in the same range. Utilizing the higher order Haar wavelet method leads to a reduction in the computational cost since the same accuracy with the Haar wavelet method can be achieved with the use of several order lower mesh.
1. Kokinakis, W. and Sperrazza, J. Criteria for incapacitating soldiers with fragments and flechettes. Ballist. Res. Lab., 1965.
2. Angel, J. Methodology for Dynamic Characterization of Fragmenting Warheads. Army Research Laboratory, Aberdeen, 2009.
3. Ahmed, K., Malik, A. Q., Hussain, A., Ahmad, I. R. and Ahmad, I. Blast and fragmentation studies of a scaled down artillery shell-simulation and experimental approaches. Int. J. Multiphys., 2021, 15(1), 49–71.
https://doi.org/10.21152/1750-9548.15.1.49
4. Arnold, W. and Rottenkolber, E. Fragment mass distribution of metal cased explosive charges. Int. J. Impact Eng., 2008, 35(12), 1393–1398.
https://doi.org/10.1016/j.ijimpeng.2008.07.049
5. Zecevic, B., Terzic, J., Catovic, A. and Serdarevic-Kadic, S. Characterization of distribution parameters of fragment mass and number for conventional projectiles. In Proceedings of the New Trends in Research of Energetic Materials, Czech Republic, 13 April 2011. 1026–1039.
6. Djelosevic, M. and Tepic, G. Probabilistic simulation model of fragmentation risk. J. Loss Prev. Process Ind., 2019, 60, 53–75.
https://doi.org/10.1016/j.jlp.2019.04.003
7. Ugrčić, M. and Ivanišević, M. Characterization of the natural fragmentation of explosive ordnance using the numerical techniques based on the FEM. Sci. Tech. Rev., 2015, 65(4), 16–27.
https://doi.org/10.5937/str1504016u
8. Kljuno, E. and Catovic, A. Trajectory estimation model for a solid body with an irregular shape undergoing extremely high aerodynamic forces. Period. Eng. Nat. Sci., 2021, 9(2).
https://doi.org/10.21533/pen.v9i2.1694
9. Szmelter, J. and Kiat Lee, C. Prediction of fragment distribution and trajectories of exploding shells. J. Battlef. Technol., 2007, 10(3), 1–6.
10. Lepik, Ü. and Hein, H. Applying Haar wavelets in the optimal control theory. In Haar Wavelets. Mathematical Engineering. Springer, Cham, 2014, 123–135.
https://doi.org/10.1007/978-3-319-04295-4_9
11. Pervaiz, N. and Aziz, I. Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations. Phys. A: Stat. Mech. Appl., 2020, 545, 123738.
https://doi.org/10.1016/j.physa.2019.123738
12. Aziz, I. and Khan, I. Numerical solution of diffusion and reaction-diffusion partial integro-differential equations. Int. J. Comput. Methods, 2018, 15(6).
https://doi.org/10.1142/S0219876218500470
13. Siraj-ul-Islam, Aziz, I. and Al-Fhaid, A. S. An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J. Comput. Appl. Math., 2014, 260, 449–469.
https://doi.org/10.1016/j.cam.2013.10.024
14. Majak, J., Shvartsman, B., Karjust, K., Mikola, M., Haavajõe, A. and Pohlak, M. On the accuracy of the Haar wavelet discretization method. Compos. B Eng., 2015, 80, 321–327.
https://doi.org/10.1016/j.compositesb.2015.06.008
15. Lepik, Ü. Solving PDEs with the aid of two-dimensional Haar wavelets. Comput. Math. with Appl., 2011, 61(7), 1873–1879.
https://doi.org/10.1016/j.camwa.2011.02.016
16. Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simul., 2005, 68(2), 127–143.
https://doi.org/10.1016/j.matcom.2004.10.005
17. Lepik, Ü. Haar wavelet method for nonlinear integro-differential equations. Appl. Math. Comput., 2006, 176(1), 324–333.
https://doi.org/10.1016/j.amc.2005.09.021
18. Lepik, Ü. Application of the Haar wavelet transform to solving integral and differential equations. Proc. Estonian Acad. Sci., 2007, 56(1), 28–46.
https://doi.org/10.3176/phys.math.2007.1.03
19. Lepik, Ü. Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput., 2007, 185(1), 695–704.
https://doi.org/10.1016/j.amc.2006.07.077
20. Lepik, Ü. Solving fractional integral equations by the Haar wavelet method. Appl. Math. Comput., 2009, 214(2), 468–478.
https://doi.org/10.1016/j.amc.2009.04.015
21. Swati, Singh, M. and Singh, K. An advancement approach of Haar wavelet method and Bratu-type equations. Appl. Numer. Math., 2021, 170, 74–82.
https://doi.org/10.1016/j.apnum.2021.07.014
22. Ahsan, M., Bohner, M., Ullah, A., Khan, A. A. and Ahmad, S. A Haar wavelet multi-resolution collocation method for singularly perturbed differential equations with integral boundary conditions. Math. Comput. Simul., 2023, 204, 166–180.
https://doi.org/10.1016/j.matcom.2022.08.004
23. Hein, H. and Jaanuska, L. Quantification of cracks in beams on the Pasternak foundation using Haar wavelets and machine learning. Proc. Estonian Acad. Sci., 2022, 71(1), 16–29.
https://doi.org/10.3176/proc.2022.1.02
24. Jaanuska, L. and Hein, H. Delamination quantification by Haar wavelets and machine learning. Mech. Compos. Mater., 2022, 58, 249–260.
https://doi.org/10.1007/s11029-022-10025-2
25. Hein, H. and Jaanuska, L. Comparison of machine learning methods for crack localization. Acta Comment. Univ. Tartu. Math., 2019, 23(1).
https://doi.org/10.12697/ACUTM.2019.23.13
26. Hein, H. and Jaanuska, L. Detection and classification of cracking in nonlocal nanobeams using modal data and Haar wavelets. AIP Conf. Proc., 2023, 2849(1), 250004.
https://doi.org/10.1063/5.0162292
27. Majak, J., Pohlak, M., Karjust, K., Eerme, M., Kurnitski, J. and Shvartsman, B. S. New higher order Haar wavelet method: application to FGM structures. Compos. Struct., 2018, 201, 72–78.
https://doi.org/10.1016/j.compstruct.2018.06.013
28. Arda, M., Majak, J. and Mehrparvar, M. Longitudinal wave propagation in axially graded Raylegh–Bishop nanorods. Mech. Compos. Mater., 2024, 59, 1109–1128.
https://doi.org/10.1007/s11029-023-10160-4
29. Sorrenti, M., Di Sciuva, M., Majak, J. and Auriemma, F. Static response and buckling loads of multilayered composite beams using the refined zigzag theory and higher-order Haar wavelet method. Mech. Compos. Mater., 2021, 57, 1–18.
https://doi.org/10.1007/s11029-021-09929-2
30. Majak, J., Shvartsman, B., Ratas, M., Bassir, D., Pohlak, M., Karjust, K. et al. Higher-order Haar wavelet method for vibration analysis of nanobeams. Mater. Today Commun., 2020, 25, 101290.
https://doi.org/10.1016/j.mtcomm.2020.101290
31. Mehrparvar, M., Majak, J., Karjust, K. and Arda, M. Free vibration analysis of tapered Timoshenko beam with higher order Haar wavelet method. Proc. Estonian Acad. Sci., 2022, 71(1), 77–83.
https://doi.org/10.3176/proc.2022.1.07
32. Mehrparvar, M., Majak, J. and Karjust, K. Free vibration analysis of Timoshenko beam by higher-order Haar wavelet method. AIP Conf. Proc., 2023, 2849(1), 250007.
https://doi.org/10.1063/5.0162269
33. Arda, M., Karjust, K. and Mehrparvar, M. Wave propagation in axially graded carbon nanotubes. AIP Conf. Proc., 2023, 2849(1), 250006.
https://doi.org/10.1063/5.0162668
34. Ratas, M., Salupere, A. and Majak, J. Solving nonlinear PDEs using the higher order Haar wavelet method on nonuniform and adaptive grids. Math. Model. Anal., 2021, 26(1).
https://doi.org/10.3846/mma.2021.12920
35. Darweesh, A., Al-Khaled, K. and Al-Yaqeen, O. A. Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations. Heliyon, 2023, 9(9), e19717. https://doi.org/10.1016/j.heliyon.2023.e19717
36. Ahsan, M., Lei, W., Khan, A. A., Ahmed, M., Alwuthaynani, M. and Amjad, A. A higher-order collocation technique based on Haar wavelets for fourth-order nonlinear differential equations having nonlocal integral boundary conditions. Alex. Eng. J., 2024, 86, 230–242.
https://doi.org/10.1016/j.aej.2023.11.066
37. Swati, Singh, M. and Singh, K. An efficient technique based on higher order Haar wavelet method for Lane–Emden equations. Math. Comput. Simul., 2023, 206, 21–39.
https://doi.org/10.1016/j.matcom.2022.10.031
38. Bulut, F., Oruç, Ö. and Esen, A. Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation. Math. Comput. Simul., 2022, 197, 277–290.
https://doi.org/10.1016/j.matcom.2022.02.006
39. Ahsan, M., Lei, W., Khan, A. A., Ullah, A., Ahmad, S., Arifeen, S. U. et al. A high-order reliable and efficient Haar wavelet collocation method for nonlinear problems with two point-integral boundary conditions. Alex. Eng. J., 2023, 71, 185–200.
https://doi.org/10.1016/j.aej.2023.03.011
40. Moxnes, J. F., Frøyland, Ø., Øye, I. J., Brate, T. I., Friis, E., Ødegårdstuen, G. et al. Projected area and drag coefficient of high velocity irregular fragments that rotate or tumble. Def. Technol., 2017, 13(4), 269–280.
https://doi.org/10.1016/j.dt.2017.03.008