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Abstract. Fragments that have an irregular shape and move at high speeds are difficult to assess since experiments require high-tech 
solutions, and the differential equations that describe the motion cannot be solved analytically. Different numerical and function 
approximation methods are used to find the trajectory model. This work uses a state-of-the-art, higher order Haar wavelet method to 
approximate the trajectory model with empirically determined drag force. The initial conditions of the flight of the fragments are 
determined by the finite element method. The results obtained by utilizing the Haar wavelet method and the higher order Haar wavelet 
method are compared. The higher order Haar wavelet method outperforms the Haar wavelet method but allows for keeping the 
implementation complexity of the method in the same range. Utilizing the higher order Haar wavelet method leads to a reduction in 
the computational cost since the same accuracy with the Haar wavelet method can be achieved with the use of several order lower 
mesh. 
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1. INTRODUCTION 
 
The study of the flight of fragments provides an opportunity to assess the risk of fast-moving fragments 
thrown into the environment. The risk of fragments depends on the density of fragments per volume unit and 
the kinetic energy of the investigated fragment at the location under consideration [1]. The initial parameters 
of fragmentation are determined by the fragmenting object and the nature of the formation. The fragmenting 
objects can be fuel tanks, explosive devices, vehicle body parts, etc., and the nature of the formation is mostly 
explosion, collision, or fracture. Simulations, experiments, and statistical models are used to study the 
fragments produced by the explosion. Conducting experiments and collecting the information necessary for 
the flight of fragments, such as fragment mass, dimensions, velocities, accelerations, and direction vectors, 
are resource- and labor-intensive [2–4]. Statistical models can be used in limited situations based on specific 
experiments and may not be appropriate for a specific case [5]. Djelosevic and Tepic introduced the 
probabilistic mass method [6], Ahmed et al. utilized the arbitrary Lagrangian–Eulerian approach [3], and 
Ugrčić adapted the stochastic failure theory [7] fragmentation analysis of metallic objects. The simulation 
results can be utilized as initial data for the point mass trajectory model, described by a nonlinear system of 
ordinary differential equations (ODE). Kljuno and Catovic [8], Szmelter and Lee [9] used the Runge–Kutta 
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numerical method, and Djelosevic and Tepic [6] used the Taylor series numerical method to solve the ODE 
system.  

For the purpose of solving the trajectory system of equations, herein two recent numerical methods, the 
Haar wavelet method (HWM) and the higher order Haar wavelet method (HOHWM), are implemented. The 
HWM, introduced in 1997 by Chen and Hsiao, has been applied with success for solving a wide class of 
differential and integro-differential equations [10–14]. Pioneering work in the development and application 
of the HWM was done by Lepik, who considered integer and fractional differential equations as well as 
integro-differential equations, covering a wide class of problems from mathematics, physics, and evolution 
equations [10,15–20]. The HWM is known as a method with simple implementation since it is based on the 
simplest wavelet [10]. Recently, the HWM was applied with success for solving Bratu-type equations [21] – 
singularly perturbed differential equations with integral boundary conditions [22]. In [23–26], the HWM is 
combined with AI methods and tools. However, the rate of convergence of the HWM is two, i.e., rather 
humble. In 2018, the HOHWM was introduced as the principal improvement of the HWM [27]. The rate of 
convergence of the HOHWM depends on the method parameter and, in simpler cases, is equal to four. The 
HOHWM has been utilized with success by a number of authors in [28–39] for solving a wide class of ODE 
[28–33], partial differential equations [34], and fractional Fredholm integro-differential equations [35], but 
needs still further validation with more complex problems. Herein, the HWM and HOHWM are adapted for 
solving nonlinear systems of trajectory equations of the fragments.  
 
 
2. FORMULATION 
 
In this section, the formulation of the flight dynamics of fragments is developed. Beforehand, initial coordinate 
values, velocity values with regard to coordinates, air density, fragment mass, drag coefficient, and exposed 
area are all necessary. Next, the trajectory model is simplified, which is then solved by employing the higher 
order Haar wavelet method. 
 
2.1. Flight  dynamics  of  the  fragments 
 
The natural fragmentation simulation of an explosive projectile shell is based on the finite element method 
and stochastic failure theory and is simulated in the ANSYS AUTODYN software.  

The arbitrary Lagrangian–Eulerian approach with the Johnson–Cook strength and fracture method is used 
to simulate fragmentation and the propagation of fragments into the surrounding air. Numerical analyses 
determine the fragment’s initial position, velocity, mass, and volume. The coordinate system of the simulation 
is based on the CAD model and is transformed into the coordinate system of the situation. On the rear surface 
of the unfragmented projectile, the z-axis intersects with the axis of symmetry of the projectile and is at an 
angle of 60 degrees from the ground. The 𝑥y-plane represents the ground surface. Figure 1 visualizes the 
geometry used in the simulation, the coordinate system, and the scattering of fragments caused by the 
explosion. 

 
2.2. Trajectory  model  of  the  fragments 
 
The path of a fragment moving while being affected by drag and gravitational force can be predicted using 
the point mass trajectory model based on the Lord Rayleigh’s drag equation [5,9,40]: 
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where 𝑥′, y′ and 𝑧′ are velocities in each direction,           is the air density, and g = 9.81 𝑚/𝑠2 is the 
gravitational acceleration. Also, CD is the drag coefficient, which as a rule is affected by the Mach number. 
Still, CD = 0.6 is the result of the most common simplification applied in this study, which assumes a constant 
drag coefficient [5]. A few mathematical operations are carried out in order to build a solution for the system 
of differential equations; in Eq. (1) the value of 𝑦 can be found in terms of 𝑥: 

Quasilinearization is a numerical method that solves a series of linearized problems iteratively in order to 
estimate the solution of the nonlinear differential system of equations. Essentially, quasilinearization involves 
linearizing the nonlinear problem around the current estimate of the solution at each iteration, solving the 
resulting linearized problem and using the solution to update the estimate of the solution to the original 
nonlinear problem. Until convergence is reached, this process is continued iteratively. Then, by substituting 

 the system of three equations can be reduced to two equations:  

In order to linearize the nonlinear systems, the Taylor series expansion has been utilized in Eq. (4): 

where 
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Fig. 1. Unfragmented projectile (a) and fragmentation and propagation of fragments (b). 
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2.3. Higher  order  Haar  wavelet  method 
 
The discontinuous Haar wavelet, a specific family of discrete orthonormal wavelets with a step function-like 
appearance, is one of the most basic wavelets. A basis, whose components are orthonormal to each other and 
normalized to the unit length, is made up of the additional wavelets that are derived from the same basic 
wavelet. This property allows wavelet coefficients to be computed independently of each other. The functions 
for Haar are given as: 

where 

where integer 𝑘 = 0,1, ... , 𝑚 – 1  specifies the location of the particular square wave, and 𝑚 = 2𝑗 is the 
maximum number of square waves arranged in the interval [𝐴,𝐵]. Hence, the integrals of the Haar functions 
of order 𝑛 can be presented as in [14]: 

As mentioned before, the higher order Haar wavelet techniques make it easier to analyze complicated 
data patterns more precisely, capturing minute details and subtle fluctuations. This improved resolution is 
especially helpful in situations where a greater degree of information is essential for correctly interpreting 
and comprehending the underlying dynamics. The higher order wavelet expansion is introduced in [27]: 

In Eq. (9), 𝑎𝑖 is a component of the unknown coefficient vector. Finally, the method’s numerical order of 
convergence can then be calculated based on [14]: 
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where Fe is the existing solution in the literature. 
 
 
3. NUMERICAL  RESULTS  
 
A projectile with a mass of 12 kg and a diameter of 105 mm was used in the simulation as a case study. The  
0.17 ms simulation produced about 3950 fragments. Of these fragments, one was selected based on its initial 
location and velocity. The fragment’s location and velocity with respect to the 𝑥­axis were then determined 
using the formulation given in the previous section, and were compared to the results from the HWM 
(Table 1). The convergence rate in both cases was calculated by Eq. (10), in which 𝐹e was obtained by 
utilizing the well­known Runge–Kutta method as a reference at 𝑡 = 2.5 s. 

In Table 1, N is the number of collocation points, 𝑁 = 2 · 𝑚. As can be observed, in the case of the 
HOHWM, the absolute error decreases and converges much faster compared to the HWM, allowing for fewer 
collection points to achieve an accurate result. In Table 2, the results of the location and velocities in each 
direction are gathered for the same fragment mentioned before at various time steps. 

It should be mentioned that since the initial values of coordinates and velocities are in a wide range, an 
accurate method, such as the utilized HOHWM, and a precise programming process are needed to achieve 
an accurate result. 
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4 –17.29994925 1.28E–01 
 

–2.78958350 9.85E–02  

8 –17.39615158 3.18E–02 2.0103933 –2.86413772 2.40E–02 2.0383492 

16 –17.42001639 7.93E–03 2.0030078 –2.88213661 5.99E–03 2.0015815 

32 –17.42596710 1.98E–03 2.0007748 –2.88663071 1.50E–03 2.0009089 

64 –17.42745378 4.95E–04 2.0001951 –2.88775339 3.74E–04 2.0003872 

128 –17.42782539 1.24E–04 2.0000489 –2.88803396 9.35E–05 2.0000500 

256 –17.42791828 3.10E–05 2.0000122 –2.88810410 2.34E–05 2.0000246 
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O
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W

M
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4 –17.42072359 7.23E–03  –2.88349768 4.63E–03  

8 –17.42751557 4.34E–04 4.0576692 –2.88784956 2.78E–04 4.0581877 

16 –17.42792242 2.68E–05 4.0146075 –2.88811028 1.72E–05 4.0142098 

32 –17.42794758 1.67E–06 4.0036622 –2.88812641 1.07E–06 4.0046429 

64 –17.42794915 1.04E–07 4.0009162 –2.88812741 6.69E–08 4.0008970 

128 –17.42794924 6.53E–09 4.0002289 –2.88812748 4.18E–09 4.0002293 

256 –17.42794925 4.08E–10 4.0000549 –2.88812748 2.61E–10 4.0000268 

 Runge–Kutta method:  –17.42794925       Runge–Kutta method:  –2.88812748 

 
 

Table 1. Comparison of HWM and HOHWM for selected fragment at  𝑡 = 2.5 s 
 
 



 
 
4. CONCLUSION 
 
Using finite element analysis, the mass and shape of the fragments, their initial positions, and velocities have 
been determined. The numerical solution of the fragment trajectory model was performed using the higher 
order Haar wavelet method with a simplified approach for modeling drag coefficient behavior. The HWM 
solution has been developed as a reference solution. The rates of convergence obtained by applying HWM 
and HOHWM were equal to two and four, respectively. The HOHWM provides possibilities for further 
increase of accuracy (by changing method parameters), but in the latter case, a remarkable increase of the 
implementation complexity can be observed. Higher accuracy with the same mesh used or equal accuracy 
with a lower mesh achieved by HOHWM leads to saving computing time, i.e., energy resources, etc.  
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Fragmendi  lennudünaamika  analüüs  kõrgemat  järku  Haari  lainikute  meetodi  abil 
 

Lenart Kivistik, Marmar Mehrparvar, Martin Eerme ja Jüri Majak 
 
Ebakorrapärase kujuga ja suurel kiirusel liikuvate fragmentide lennudünaamika on komplitseeritud, mistõttu 
seda on raske hinnata, kuna katsed eeldavad kõrgtehnoloogilisi lahendusi ning liikumist kirjeldavad dife-
rentsiaalvõrrandid pole analüütiliselt lahendatavad. Trajektoori mudeli koostamiseks leiab kirjandusest eri-
nevaid numbrilisi algoritme. Artiklis on kasutatud empiiriliselt määratud õhutakistusega trajektoori mudeli 
lähendamiseks kõrgemat järku Haari lainikute meetodit. Fragmentide lennu algtingimused on määratud lõp-
like elementide meetodi abil. Võrreldud on Haari lainikute ja kõrgemat järku Haari lainikute meetodite tule-
musi. Selgub, et sama keerukuse korral tagab kõrgemat järku Haari lainikute meetod suurema täpsuse kui 
Haari lainikute meetod. Kõrgemat järku Haari lainikute meetodi kasutamine võimaldab vähendada arvutus-
mahtu, kuna võrdlusmeetodiga sama täpsus saavutati mitu järku madalamat arvutusvõrku kasutades. 
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