Let G be a finite group with the identity element e. The proper order graph of G, denoted by ℒ* (G), is an undirected graph with a vertex set G \ {e}, where two distinct vertices x and y are adjacent whenever o(x) | o(y) or o(y) | o(x), where o(x) and o(y) are the orders of x and y, respectively. This paper studies the perfect codes of ℒ*(G). We characterize all connected components of a proper order graph and give a necessary and sufficient condition for a connected proper order graph. We also determine the perfect codes of the proper order graphs of a few classes of finite groups, including nilpotent groups, CP-groups, dihedral groups and generalized quaternion groups.
1. Aalipour, G., Akbari, S., Cameron, P. J., Nikandish, R. and Shaveisi, F. On the structure of the power graph and the enhanced power graph of a group. Electron. J. Combin., 2017, 24(3), P3.16.
https://doi.org/10.37236/6497
2. Abawajy, J., Kelarev, A. and Chowdhury, M. U. Power graphs: a survey. Electron. J. Graph Theory Appl., 2013, 1(2), 125–147.
https://doi.org/10.5614/ejgta.2013.1.2.6
3. Asboei, A. K. and Salehi, S. S. Some results on the main supergraph of finite groups. Algebra Discret. Math., 2020, 30(2), 172–178.
https://doi.org/10.12958/adm584
4. Asboei, A. K. and Salehi, S. S. The main supergraph of finite groups. New York J. Math., 2022, 28(28), 1057–1063.
5. Bubboloni, D., Iranmanesh, M. A. and Shaker, S. M. Quotient graphs for power graphs. Rendiconti del Semin. Mat. dell Univ. di Padovo, 2017, 138, 61–89.
https://doi.org/10.4171/RSMUP/138-3
6. Chakrabarty, I., Ghosh, S. and Sen, M. K. Undirected power graphs of semigroups. Semigroup Forum, 2009, 78, 410–426.
https://doi.org/10.1007/s00233-008-9132-y
7. Dejter, I. J. and Serra, O. Efficient dominating sets in Cayley graphs. Discret. Appl. Math., 2003, 129(2–3), 319–328.
https://doi.org/10.1016/S0166-218X(02)00573-5
8. Delgado, A. L. and Wu, Y.-F. On locally finite groups in which every element has prime power order. Illinois J. Math., 2002, 46(3), 885–891.
https://doi.org/10.1215/ijm/1258130990
9. Hamzeh, A. and Ashrafi, A. R. Automorphism groups of supergraphs of the power graph of a finite group. Eur. J. Combin., 2017, 60, 82–88.
https://doi.org/10.1016/j.ejc.2016.09.005
10. Hamzeh, A. and Ashrafi, A. R. The order supergraph of the power graph of a finite group. Turkish J. Math., 2018, 42(4), 1978–1989.
https://doi.org/10.3906/mat-1711-78
11. Hamzeh, A. and Ashrafi, A. R. Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups. Filomat, 2017, 31(16), 5323–5334.
https://doi.org/10.2298/FIL1716323H
12. Hamzeh, A. and Ashrafi, A. R. Some remarks on the order supergraph of the power graph of a finite group. Int. Electron. J. Algebra, 2019, 26, 1–12.
https://doi.org/10.24330/ieja.586838
13. Heden, O. A survey of perfect codes. Adv. Math. Commun., 2008, 2(2), 223–247.
https://doi.org/10.3934/amc.2008.2.223
14. Huang, H., Xia, B. and Zhou, S. Perfect codes in Cayley graphs. SIAM J. Discret. Math., 2018, 32(1), 548–559.
https://doi.org/10.1137/17M1129532
15. Johnson, D. L. Topics in the Theory of Group Presentations. Cambridge University Press, New York, 1980.
https://doi.org/10.1017/CBO9780511629303
16. Kelarev, A. Graph Algebras and Automata. Marcel Dekker, New York, 2003.
https://doi.org/10.1201/9781482276367
17. Kelarev, A. and Quinn, S. J. A combinatorial property and power graphs of groups. Contrib. General Algebra, 2000, 12(58), 229–235.
18. Kelarev, A., Ryan, J. and Yearwood, J. Cayley graphs as classifiers for data mining: the influence of asymmetries. Discret. Math., 2009, 309(17), 5360–5369.
https://doi.org/10.1016/j.disc.2008.11.030
19. Kratochvíl, J. Perfect codes over graphs. J. Comb. Theory Ser. B, 1986, 40(2), 224–228.
https://doi.org/10.1016/0095-8956(86)90079-1
20. Kumar, A., Selvaganesh, L., Cameron, P. J. and Chelvam, T. T. Recent developments on the power graph of finite groups – a survey. AKCE Int. J. Graphs Comb., 2021, 18(2), 65–94.
https://doi.org/10.1080/09728600.2021.1953359
21. Lee, J. Independent perfect domination sets in Cayley graphs. J. Graph Theory, 2001, 37(4), 213–219.
https://doi.org/10.1002/jgt.1016
22. Ma, X. and Su, H. On the order supergraph of the power graph of a finite group. Ric. di Mat., 2022, 71(2), 381–390.
https://doi.org/10.1007/s11587-020-00520-w
23. Mollard, M. On perfect codes in Cartesian products of graphs. Eur. J. Comb., 2011, 32(3), 398–403.
https://doi.org/10.1016/j.ejc.2010.11.007
24. Rather, B. A., Pirzada, S. and Zhou, G. F. On distance Laplacian spectra of certain finite groups. Acta Math. Sin. Engl. Ser., 2023, 39(4), 603–617.
https://doi.org/10.1007/s10114-022-0359-4