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Abstract. Let G be a finite group with the identity element e. The proper order graph of G, denoted by S ∗(G), is an undirected
graph with a vertex set G \ {e}, where two distinct vertices x and y are adjacent whenever o(x) | o(y) or o(y) | o(x), where o(x)
and o(y) are the orders of x and y, respectively. This paper studies the perfect codes of S ∗(G). We characterize all connected
components of a proper order graph and give a necessary and sufficient condition for a connected proper order graph. We also
determine the perfect codes of the proper order graphs of a few classes of finite groups, including nilpotent groups, CP-groups,
dihedral groups and generalized quaternion groups.
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1. INTRODUCTION

In the field of algebraic graph theory, a popular and interesting research topic is groups and graphs, which is
the study of the graph representations of an algebraic structure, such as a group or a ring, for example, the
celebrated Cayley graphs over groups. Furthermore, graphs associated with some algebraic structures have
been actively investigated in the literature since they have valuable applications, see, for example, Cayley
graphs in data mining [18]. They are also related to the automata theory [16].

Another well-known graph representation by a group is the power graph. Let G be a group. The directed
power graph of G is a digraph with a vertex set G, and for distinct x,y∈G, there exists a directed edge from x
to y if and only if y is a power of x. In 2000, Kelarev and Quinn [17] first introduced the directed power graph
of a group. In 2009, Chakrabarty et al. [6] introduced the undirected power graph P(S) of a semigroup S,
which is an undirected graph with a vertex set S, and two distinct vertices are adjacent if one is a power of
the other. Since a group is also a semigroup, the definition of an undirected power graph P(G) of a group
G is also introduced in [6]. In the past ten years, the study of power graphs has been growing. See, for
example, the two survey papers [2,20] containing almost all the results and open questions on power graphs.
In recent years, some authors generalized and modified the concept of a power graph in various ways, such
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as the enhanced power graphs [1] and the quotient power graphs [5]. Also, the distance Laplacian spectra
of power graphs were studied in [24].

Given a finite group G, the order graph of G, denoted by S (G), is the graph with a vertex set G, where
two distinct vertices x and y are adjacent whenever o(x) | o(y) or o(y) | o(x), where o(x) and o(y) are the
orders of x and y, respectively. Notice that for any group G, P(G) is always a spanning subgraph of S (G).
Hamzeh and Ashrafi [9] first introduced the definition of the order graph of a group and called S (G) as the
main supergraph of the power graph of G. Also, they characterized the full automorphism group of the order
graph of a finite group. In 2018, Hamzeh and Ashrafi [10] studied some properties of S (G) together with
the relationship between S (G) and P(G). In [22], Ma and Su studied the independence number of an order
graph. Hamiltonianity and Eulerianness of S (G) were investigated in [12] and spectrum and L-spectrum
of S (G) were investigated in [11]. In [3], Asboei and Salehi studied the well-known Thompson’s problem
and recognized the projective special linear groups and the projective linear groups by their order graphs.
Recently, Asboei and Salehi [4] identified many families of finite non-solvable groups by their order graphs,
which is an important work for the Thompson’s problem.

Perfect code has been an important object of study in coding theory ever since the beginning of infor-
mation theory. Roughly speaking, a code is perfect if it can achieve the maximum possible error correction
without ambiguity. In the classical setting, much work has been focused on perfect codes under the Ham-
ming or Lee metric. Since the beginning of coding theory in the late 1940s, perfect code has been an
important object of study in information theory (see the survey paper [13] on perfect codes and related def-
initions in the classical setting). Beginning with [19], perfect codes in general graphs have also attracted
considerable attention in the community of graph theory (see [23]). In particular, perfect codes in Cayley
graphs of groups are especially charming objects of study (see [14]).

In this paper, a graph always means an undirected graph without loops and multiple edges. Let Γ be a
graph. Denote by V (Γ) and E(Γ) the vertex set and edge set of Γ, respectively. A subset C of V (Γ) is called
a perfect code if C is an independent set such that every vertex in V (Γ)\C is adjacent to exactly one vertex
in C. In graph theory, a perfect code is also called an efficient dominating set [7] or independent perfect
dominating set [21].

Every group considered in our paper is finite. We always use G to denote a finite group and use e
to denote the identity element of G. Note that in S (G), e is always adjacent to any non-trivial element.
Therefore, by the definition of a perfect code, every perfect code of the order graph of a group has size one,
which is {e}. Thus, in this paper, we consider the subgraph of S (G) induced by G\{e}, which is denoted
by S ∗(G) and is called the proper order graph of G.

In this paper, we study the perfect codes of the proper order graph of a finite group. Specifically, we
characterize all connected components of a proper order graph and give a necessary and sufficient condi-
tion for the connected proper order graph of a group. We also determine the perfect codes of the proper
order graphs of a few classes of finite groups, including nilpotent groups, CP-groups, dihedral groups and
generalized quaternion groups.

2. CONNECTED COMPONENTS

In this section, we characterize all connected components of a proper order graph (see Proposition 2.1) and
give a necessary and sufficient condition for the connected proper order graph of a group (see Corollary 2.3).
As applications, we show that for n ≥ 3, S ∗(Sn) is connected if and only if n ̸= p or p+ 1, where p is a
prime (see Theorem 2.5).

Throughout this paper, Zn denotes the cyclic group of order n. For an element g of G, the order of g is
the size of the subgroup ⟨g⟩ generated by g, which is denoted by o(g). If o(x) = 2 for some x ∈ G, then x
is called an involution. The symmetric group of degree n, denoted by Sn, is the group of all permutations
on n letters. Remark that if n ≥ 3, then Sn is a non-nilpotent group. Let ⟨x⟩ be a cyclic subgroup of G. If
⟨x⟩ ⊈ ⟨y⟩ for any cyclic subgroup ⟨y⟩ of G, then ⟨x⟩ is called a maximal cyclic subgroup of G. The set of
all maximal cyclic subgroups of G is denoted by M (G). It is easy to see that |M (G)| = 1 if and only if
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G is cyclic. Note that if |G| ≥ 2, then ⟨e⟩ /∈ M (G). Let Γ be a graph. If S ⊆ V (Γ), then the subgraph of
Γ induced by S is denoted by Γ[S]. A connected component of a graph Γ is a subgraph of Γ in which any
two vertices are connected to each other by paths and which is connected to no additional vertices in Γ. In
particular, if Γ is connected, then Γ has a unique connected component which is itself.

Recall that G is a finite group. In the following, write

M (G) = {M1,M2, . . . ,Mt}. (1)

Define a binary relation ≈ over M (G) as follows:

Mi ≈ M j ⇔ (|Mi|, |M j|) ̸= 1, i, j ∈ {1,2, . . . , t}.

Observe that ≈ is reflexive and symmetric. However, ≈ does not satisfy transitivity, so it is not an equiva-
lence relation over M (G). Next, we give another binary relation ≡ over M (G) as follows:

Mi ≡ M j ⇔ either Mi ≈ M j or there exist Mα1 ,Mα2 , . . . ,Mαl in M (G) such that
Mi ≈ Mα1 ≈ Mα2 ≈ ·· · ≈ Mαl ≈ M j,

where i, j ∈ {1,2, . . . , t}. It is readily seen that the relation ≡ is an equivalence relation on M (G). Let Mi
denote the equivalence ≡-class containing Mi for each 1 ≤ i ≤ t. Write

M̂i =
⋃

M∈Mi

(M \{e}).

Refer to (1), we denote by
{Mα1 ,Mα2 , . . . ,Mαk} (2)

the set of all equivalence ≡-classes on M (G), where k is a positive integer. We next give all connected
components of S ∗(G).

Proposition 2.1. With reference to (2), the connected components of S ∗(G) are

S ∗(G)[M̂α1 ],S
∗(G)[M̂α2 ], . . . ,S

∗(G)[M̂αk ]. (3)

Proof. By (2), we have {M̂α1 ,M̂α2 , . . . ,M̂αk} as a partition of G. Thus, it suffices to prove that S ∗(G)[M̂αi ]

is a connected component of S ∗(G) for any 1 ≤ i ≤ k. We first prove that S ∗(G)[M̂αi ] is connected. Now
let a,b be two distinct vertices of M̂αi . If a,b ∈ ⟨c⟩, where ⟨c⟩ ∈ Mαi , then it is easy to see that either a ∼ b
or a ∼ c ∼ b, as desired. In the following, we assume that a ∈ ⟨x⟩ and b ∈ ⟨y⟩ for distinct ⟨x⟩,⟨y⟩ ∈ Mαi .
It follows that either ⟨x⟩ ≈ ⟨y⟩ or there are ⟨g1⟩, . . . ,⟨gm⟩ ∈ M (G) such that ⟨x⟩ ≈ ⟨g1⟩ ≈ · · · ≈ ⟨gm⟩ ≈ ⟨y⟩.
Suppose that ⟨x⟩ ≈ ⟨y⟩. Take a prime p | (o(x),o(y)) and let c ∈ G with o(c) = p. Then it is easy to see that
a ∼ x ∼ c ∼ y ∼ b (here a may be equal to x or c), and so a and b are connected. It is similar to the latter
case, where we also can obtain that a and b are connected. Thus, S ∗(G)[M̂αi ] is connected, as desired.

We then prove that S ∗(G)[M̂αi ] is a connected component. Namely, for any g ∈ V (S ∗(G)) \ M̂αi , we
have that N(g)∩ M̂αi = /0. Assume, to the contrary, that there exists h ∈ V (S ∗(G)) \ M̂αi such that h is
adjacent to some vertex w ∈ M̂αi . Let h ∈ ⟨h′⟩ and w ∈ ⟨w′⟩ with ⟨h′⟩ ∈ M (G) and ⟨w′⟩ ∈ Mαi . Note that
o(h) | o(w) or o(w) | o(h). It follows that o(h) | (|⟨h′⟩|, |⟨w′⟩|) or o(w) | (|⟨h′⟩|, |⟨w′⟩|). As a result, we have
that ⟨w′⟩ ≈ ⟨h′⟩, which implies that ⟨h′⟩ ∈ Mαi . It follows that h ∈ M̂αi , a contradiction. 2

For a finite group G, denote by πe(G) the set of the orders of all non-trivial elements of G. We next use
the following example to illustrate Proposition 2.1.
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Example 2.2. It is easy to see that πe(S5) = {2,3,4,5,6}. Thus, every maximal cyclic subgroup of S5 has
order 4,5 or 6. Let M1 ∈ M (S5) with |M1| = 4 and M2 ∈ M (S5) with |M2| = 5. It follows that there are
precisely two equivalence ≡-classes on M (S5), that is, M1 and M2. Hence, S ∗(S5) has two connected
components. In fact, we have

M2 = {x ∈ S5 : o(x) = 5}, M1 = {x ∈ S5 \{e} : o(x) ̸= 5}.

As an application of Proposition 2.1, we obtain a necessary and sufficient condition for which S ∗(G)
is connected.

Corollary 2.3. S ∗(G) is connected if and only if M ≡ N for each two M,N ∈ M (G).

Let n be a positive integer of at least 3. The dihedral group of order 2n, denoted by D2n, has the following
presentation:

D2n = ⟨a,b : an = b2 = e,bab = a−1⟩. (4)

Note that D2n is non-abelian and D2n = ⟨a⟩ ∪ {ab,a2b, . . . ,an−1b,b}, where aib is an involution for every
0 ≤ i ≤ n−1. It is clear that

M (D2n) = {⟨a⟩,⟨ab⟩,⟨a2b⟩, . . . ,⟨b⟩}. (5)

Suppose that m ≥ 2 is a positive integer. Johnson [15] defined the generalized quaternion group Q4n of
order 4n, which has a presentation as follows:

Q4n = ⟨x,y : xn = y2,y4 = x2n = e,y−1xy = x−1⟩. (6)

It is clear that Q4n is a non-abelian group for each n ≥ 2. Furthermore, it is easy to see that Q4n has a unique
involution xn. Note that o(xiy) = 4 for any 1 ≤ i ≤ 2n. It is easy to check that

Q4n = ⟨x⟩∪{xiy : 1 ≤ i ≤ 2n} (7)

and
M (Q4n) = {⟨x⟩,⟨xy⟩,⟨x2y⟩, . . . ,⟨xny⟩}. (8)

As applications of Proposition 2.1 and Corollary 2.3, we determine the connected components of S ∗(D2n)
and S ∗(Q4n).

Proposition 2.4. Let D2n be the dihedral group as presented in (4), and let Q4n be the generalized quater-
nion group as presented in (6). If n is even, then S ∗(D2n) is connected; otherwise, S ∗(D2n) has two
connected components S ∗(D2n)[⟨a⟩ \{e}] and S ∗(D2n)[D2n \ ⟨a⟩]. Moreover, S ∗(Q4n) is connected.

Proof. The desired results trivially follow from Proposition 2.1, Corollary 2.3, equalities (5) and (8). 2

We conclude the section by an application of Corollary 2.3, which determines all positive integers n ≥ 3
such that S ∗(Sn) is connected. In fact, the following result has been obtained (see [10, Theorem 2.32]).

Theorem 2.5. For n ≥ 3, S ∗(Sn) is connected if and only if n ̸= p or p+1, where p is a prime.

Proof. We first show that if n = p or p+1 for some prime p, then S ∗(Sn) is not connected. Suppose now
that n = p or p+1, where p is a prime. Let

A = {x ∈ Sn : o(x) = p}.

Suppose for a contradiction that there exists a nontrivial element y in Sn \A such that y is adjacent to a vertex
x ∈ A. Then it must be p | o(y) and o(y) ̸= p. Let o(y) = pk for some k ≥ 2. Note that y is a product of
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disjoint cycles of lengths of at least 2 and the largest cycle of Sn is (1,2, · · · , p). Thus, such y does not exist,
a contradiction. We conclude that S ∗(Sn)[A] is a connected component of S ∗(Sn) and is complete. As a
result, S ∗(Sn) is not connected, as desired.

Now it suffices to show that if n ̸= p or p+ 1 for some prime p, then S ∗(Sn) is connected. Suppose
that n ̸= p or p+ 1, where p is a prime. Let q be the maximum prime with q < n. Then we must have
q ≥ 7 and n−q ≥ 2 since n ̸= p or p+1. Note that |M (Sn)| ≥ 2 since Sn is not cyclic. Now take distinct
M1,M2 ∈ M (Sn). By Corollary 2.3, it is enough to prove M1 ≡ M2. Let q1 | |M1| and q2 | |M2| be two
primes. If q1 = q2, then it is clear that M1 ≡ M2, as desired. Thus, in the following we may assume q1 ̸= q2.

Suppose that one of q1 and q2 is equal to q. Without a loss of generality, let q1 = q. Since q ≥ 7 and
n− q ≥ 2, we have that Sn has an element of order 2q. Let M3 ∈ M (Sn) with 2q | |M3| (here M3 may be
M1). If q2 = 2, then clearly, M1 ≈ M3 ≈ M2, and so M1 ≡ M2, as desired. Now we may assume that q2 ̸= 2.
It follows that Sn has an element of order 2q2. Let M4 ∈ M (Sn) with 2q2 | |M4| (here M4 may be M2). As
a result, we have M1 ≈ M3 ≈ M4 ≈ M2, and so M1 ≡ M2, as desired. Similarly, the desired result holds for
this case q1 ̸= q and q2 ̸= q. The proof is now complete. 2

3. PERFECT CODES

In this section, we determine the perfect codes of the proper order graphs of a few classes of finite groups,
including nilpotent groups (see Theorem 3.4), CP-groups (see Theorem 3.5), dihedral groups (see Theo-
rem 3.7) and generalized quaternion groups (see Theorem 3.8).

For a finite group G, let S ⊆ G. We use π(G) to denote the set of all prime divisors of |G|, and let

π(S) = {p : there exists an element x ∈ S such that o(x) = p is a prime}.

Clearly, π(S) ⊆ π(G). The exponent of S, denoted by exp(S), is the least common multiple of the orders
of elements in S. If S has an element such that its order is equal to exp(S), then S is called a full exponent;
in particular, if S is a subgroup, then S is called a full exponent group. For example, abelian groups are full
exponent groups.

Refer to (3), let S ∗(G)[M̂αi ] be a connected component of S ∗(G). In the following, we study the
perfect codes of S ∗(G)[M̂αi ]. For convenience, we assume that

Mαi = {M1,M2, . . . ,Ms} ⊆ M (G). (9)

Lemma 3.1. S ∗(G)[M̂αi ] admits a perfect code of size one if and only if M̂αi is a full exponent.

Proof. Suppose that M̂αi is a full exponent. Let g ∈ M̂αi with o(g) = exp(M̂αi). It is clear that {g} is a
perfect code of S ∗(G)[M̂αi ]. For the converse, suppose that S ∗(G)[M̂αi ] has a perfect code of size one, say
{a}. Let π(M̂αi) = {p1, p2, . . . , pt}. If t = 1, then M̂αi is a full exponent since the order of any element of
M̂αi is a power of p1, as desired.

In the following, let t ≥ 2. Clearly, o(a) is not a prime power. Let x be an element of M̂αi with order pn
i ,

where 1≤ i≤ t and n is a positive integer. It follows that pn
i | o(a), and, as a result, we have o(a) = exp(M̂αi),

as desired. 2

Corollary 3.2. For a group G, S ∗(G) admits a perfect code of size one if and only if G is a full exponent.
In particular, if G is a full exponent, then {a} is a perfect code of S ∗(G), where o(a) = exp(G).

For some M ∈ M (G), if there is no maximal cyclic subgroup M′ such that |M| is a proper divisor of
|M′|, then M is called a maximal order cyclic subgroup of G. Denote by Mo(G) the set of all maximal order
cyclic subgroups of G.
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Lemma 3.3. If G satisfies the following two conditions:
(a) there exist M1,M2 in Mo(G) such that |M1| = pn, |M2| = paqbrch, where p,q,r are pairwise distinct

primes, n ≥ 2, 1 ≤ a < n, b ≥ 1, c ≥ 1, h ≥ 1, and (h, pqr) = 1;
(b) if G has no elements with order qb′rc′ l, where l is a positive integer, and one of b′ > b,c′ ≥ c and

b′ ≥ b,c′ > c occurs, then S ∗(G) does not admit perfect codes.

Proof. Suppose for a contradiction that S ∗(G) admits a perfect code, say C. Let M1 = ⟨x⟩ and M2 = ⟨y⟩.
Note that o(x) = pn and ⟨x⟩ ∈ Mo(G). Since C is a perfect code and pn ≥ 3, we must have that one of x and
x−1 does not belong to C. Without loss of generality, assume x /∈C, and similarly, let y /∈C. It follows that
there exists z ∈C such that o(z) = pm, where 1 ≤ m ≤ n. In the following, we consider two cases.

Case 1. m = 1.

Since qbrc ∈ πe(G) and qbrc ≥ 3, we have that there exists w ∈C such that o(w) | qbrc or qbrc | o(w). If
o(w) | qbrc, then it is easy to see that there exists an element y′ of order p ·o(w) in V (S ∗(G))\C, which is
impossible because both z and w are adjacent to y′. It follows that qbrc | o(w). In view of this condition (b),
it must be that o(w) = qbrc. However, y /∈C, o(z) | o(y) and o(w) | o(y): this contradicts that C is a perfect
code.

Case 2. m ≥ 2.

Note that in this case, every element of order p must not belong to C. Let u ∈ G with o(u) = p. Then
u /∈ C. Since o(pq) ≥ 3, we have that there exists an element of order pq in V (S ∗(G)) \C. It follows
that there exists d ∈ C such that o(d) | pq or pq | o(d). If pq | o(d), then both z and d are adjacent to u, a
contradiction. We conclude that o(d) | pq is a prime, and it must be o(d) = q. Similarly, we consider the
elements of order pr, and we deduce that C has an element v of order r. However, as qr ≥ 3, V (S ∗(G))\C
has an element of order qr, which is adjacent to both d and v. This contradicts that C is a perfect code. 2

As we all know, a finite group is a nilpotent group if and only if this group is the direct product of its
Sylow subgroups. In particular, in a nilpotent group, two elements of different prime orders can commute.
Thus, a nilpotent group is a full exponent. The following result follows from Corollary 3.2.

Theorem 3.4. Let G be a nilpotent group. Then S ∗(G) admits perfect codes. In particular, if a ∈ G with
o(a) = exp(G), then {a} is a perfect code of S ∗(G).

If every nontrivial element of a finite group has prime power order, then this finite group is called a
CP-group [8]. For example, the alternating group of degree five is a CP-group. Moreover, for some prime
p, any p-group is a CP-group. All finite CP-groups were characterized in [8, Theorem 4].

Theorem 3.5. Let G be a CP-group with π(G) = {p1, p2, . . . , pk}. Then S ∗(G) has perfect codes. In
particular, every perfect code of S ∗(G) has the following form:

{x1,x2, . . . ,xk}, (10)

where αi ≥ 1 and o(xi) = pαi
i for all 1 ≤ i ≤ k.

Proof. Note that G is a CP-group with π(G) = {p1, p2, . . . , pk}. By Proposition 2.1, it is easy to see that
S ∗(G) has k connected components. Moreover, for a fixed integer i (1 ≤ i ≤ k), the set of all elements
of order pl

i induces a connected component of S ∗(G), where l ≥ 1. Clearly, any connected component of
S ∗(G) is complete. As a result, S ∗(G) has perfect codes. 2

In the following, we use the following example to illustrate Theorem 3.5.
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Example 3.6. For the alternating group A5, we have πe(A5) = {2,3,5}, so A5 is a CP-group. It is easy to
see that S ∗(A5) has 3 connected components, and the set

{(1,2)(3,4),(1,2,3),(1,2,3,4,5)}

is a perfect code of S ∗(A5).

For the dihedral group D2n, as presented in (4), we have

Mo(D2n) =

{
M (D2n), if n is odd;
{⟨a⟩}, if n is even. (11)

Theorem 3.7. Suppose that D2n is the dihedral group as presented in (4).
(a) If n is even, then S ∗(D2n) has perfect codes, and, particularly, {a} is a perfect code of S ∗(D2n);
(b) if n is odd, then S ∗(D2n) has perfect codes, and, particularly, {a,b} is a perfect code of S ∗(D2n).

Proof. (a) Suppose that n is an even number. Then, by (11), we have that D2n is a full exponent and a is an
element with order exp(D2n). Thus, the required result holds by Corollary 3.2.

(b) Suppose that n is an odd number. Then (11) implies that S ∗(D2n) has two connected components,
where a connected component consisting of all involutions is complete, and another connected component
consisting of ⟨a⟩ is a full exponent. As a result, every perfect code has a form {x,y}, where o(x) = n and
o(y) = 2. In particular, {a,b} is a perfect code of S ∗(D2n), as desired. 2

In the following, we determine the generalized quaternion groups for which S ∗(Q4n) has perfect codes.

Theorem 3.8. Let Q4n be the generalized quaternion group as presented in (6).
(a) If n is even, then S ∗(Q4n) has perfect codes, and, particularly, {x} is a perfect code of S ∗(Q4n);
(b) if n = pm, where p is an odd prime and m ≥ 1, then S ∗(Q4n) has perfect codes, and every perfect

code has a form {a,b} with o(a) = 4 and o(b) = p. Particularly, {x2pm−1
,y} is a perfect code of

S ∗(Q4n);
(c) if n = pmqt l, where p,q are two distinct odd primes and l is an odd integer with (l, pq) = 1, then

S ∗(Q4n) has no perfect codes.

Proof. (a) Suppose that n is even. Note that if n = 2, then S ∗(Q4n) is complete, and the required result
follows. Now assume that n ≥ 3. By (7) and (8), it is easy to see that Mo(Q4n) = {⟨x⟩}. It follows that
S ∗(Q4n) is connected and a full exponent. Moreover, x is an element with order exp(Q4n). Thus, the
required result follows from Corollary 3.2.

(b) Suppose that n = pm, where p is an odd prime and m ≥ 1. Then (7) and (8) imply that Mo(Q4n) =
M (Q4n) and

πe(Q4n) = {2,4, p, p2, . . . , pm,2p,2p2, . . . ,2pm}. (12)

Suppose that S ∗(Q4n) has a perfect code, say C. Since ⟨y⟩ ∈ Mo(Q4n) and o(y) = 4, we have that C has
an element a with o(a) = 4 or 2. Assume, to the contrary, that o(a) = 2. Then there exists an element
b ∈ C such that b is adjacent to an element of order pm in S ∗(Q4n). By (12), it must be o(b) = pk for
some 1 ≤ k ≤ m. On the other hand, V (S ∗(Q4n)) \C must contain an element c of order 2pk, which is a
contradiction because both a and b are adjacent to c.

We conclude that o(a) = 4. Next we consider the elements of order 2p. It follows that V (S ∗(Q4n))\C
must contain an element u of order 2p. Thus, there exists an element b ∈ C such that b is adjacent to u.
Clearly, C has no involutions. If C has an element c of order 2pk for some 1 ≤ k ≤ m, then the unique
involution is adjacent to both a and c, which is impossible. As a result, it follows that b must have order p.
Now it is easy to check that {a,b} is a perfect code of S ∗(Q4n) by (12), as desired.

(c) Suppose that n= pmqt l, where p,q are two distinct odd primes and l is an odd integer with (l, pq)= 1.
(7) and (8) also imply that Mo(Q4n) = M (Q4n). Now ⟨x⟩,⟨y⟩ ∈ Mo(Q4n), o(x) = 4, o(y) = 2pmqt l, and
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(l,2pq) = 1. Moreover, by (7), we have that Q4n has no elements of order pm′
qt ′ l′, where l′ is a positive

integer, and one of m′ > m, t ′ ≥ t and m′ ≥ m, t ′ > t occurs. It follows from Lemma 3.3 that S ∗(Q4n) has
no perfect codes. 2

4. CONCLUSION

Hamzeh and Ashrafi first introduced the order graph of a group. Since the identity element e of a group G
is always adjacent to any non-trivial element, the subgraph of S (G) induced by G\{e}, which is denoted
by S ∗(G) and called the proper order graph of G, is the notion to be considered.

This article mainly studied the perfect codes of the proper order graph of a finite group. We characterized
all connected components of a proper order graph and gave a necessary and sufficient condition for the
connected proper order graph of a group. In particular, applying the results on symmetric groups, we proved
that S ∗(Sn) is connected if and only if n ̸= p or p+1, where p is a prime. We, then, determined the perfect
codes of the proper order graphs of a few classes of finite groups including nilpotent groups, CP-groups,
dihedral groups and generalized quaternion groups.
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Lõplike rühmade järkude pärisgraafide sidusad komponendid ja perfektsed koodid

Huani Li, Shixun Lin ja Xuanlong Ma

Olgu G lõplik rühm ühikelemendiga e. Rühma G järkude pärisgraaf, mida tähistatakse S*(G), on graaf
tippudega G\{e} ning selle tipud x ja y on kaastipud, kui o(x)|o(y) või o(y)|o(x); o(x) ja o(y) on vastavalt
elementide x ja y järgud. Selles artiklis uuritakse graafi S*(G) perfektseid koode. Leitakse graafi kõik sidusad
komponendid ning tarvilikud ja piisavad tingimused graafi sidususeks. Samuti leitakse järkude pärisgraafide
perfektsed koodid mõningate lõplike rühmade klasside puhul (nilpotentsed rühmad, CP-rühmad, dieedri
rühmad ja üldistatud kvaternioonide rühmad).
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