In this paper, highly dispersive optical solitons are obtained with the perturbed complex Ginzburg–Landau equation, incorporating the Kerr law of nonlinearity, by the complete discriminant classification approach. A variety of solutions emerge from this scheme that include solitons, periodic solutions and doubly periodic solutions. The numerical sketches support the analytical findings.
1. Wang, M.-Y. Optical solitons with perturbed complex Ginzburg–Landau equation in kerr and cubic–quintic–septic nonlinearity. Results Phys., 2022, 33, 105077.
https://doi.org/10.1016/j.rinp.2021.105077
2. Triki, H., Crutcher, S., Yildirim, A., Hayat, T., Aldossary, O. M. and Biswas, A. Bright and dark solitons of the modified complex Ginzburg Landau equation with parabolic and dual-power law nonlinearity. Rom. Rep. Phys., 2012, 64(2), 367–380.
3. Arnous, A. H., Biswas, A., Yıldırım, Y., Zhou, Q., Liu, W., Alshomrani, A. S. et al. Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method. Chaos Solitons Fractals, 2022, 155, 111748.
https://doi.org/10.1016/j.chaos.2021.111748
4. Biswas, A., Berkemeyer, T., Khan, S., Moraru, L., Yıldırım, Y. and Alshehri, H. M. Highly dispersive optical soliton perturbation, with maximum intensity, for the complex Ginzburg–Landau equation by semi-inverse variation. Mathematics, 2022, 10(6), 987.
https://doi.org/10.3390/math10060987
5. Biswas, A., Kara, A. H., Khan, S., Yildirim, Y., Mahmood, M. F., Alshehri, H. M. et al. Conservation laws for cubic–quartic optical solitons with complex Ginzburg–Landau equation having five nonlinear refractive index structures. Optoelectron. Adv. Mater. Rapid Commun., 2022, 16(3–4), 137–141.
6. Biswas, A., Yıldırım, Y., Ekici, M., Guggilla, P., Khan, S., González-Gaxiola, O. et al. Cubic–quartic optical soliton perturbation with complex Ginzburg–Landau equation. J. Appl. Sci. Eng., 2021, 24(6), 937–1004.
7. Kudryashov, N. A. First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput., 2020, 386, 125407.
https://doi.org/10.1016/j.amc.2020.125407
8. Li, X. and Li, S. A linearized element-free Galerkin method for the complex Ginzburg–Landau equation. Comput. Math. with Appl., 2021, 90, 135–147.
https://doi.org/10.1016/j.camwa.2021.03.027
9. Qiu, Y., Malomed, B. A., Mihalache, D., Zhu, X., Zhang, L. and He, Y. Soliton dynamics in a fractional complex Ginzburg–Landau model. Chaos Solitons Fractals, 2020, 131, 109471.
https://doi.org/10.1016/j.chaos.2019.109471
10. Kudryashov, N. A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik, 2020, 206, 163550.
https://doi.org/10.1016/j.ijleo.2019.163550
11. Kudryashov, N. A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons Fractals, 2020, 140, 110202.
https://doi.org/10.1016/j.chaos.2020.110202
12. Kudryashov, N. A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik, 2020, 206, 164335.
https://doi.org/10.1016/j.ijleo.2020.164335
13. Wang, M.-Y. Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power law nonlinear. Optik, 2022, 267, 169631.
https://doi.org/10.1016/j.ijleo.2022.169631
14. Triki, H. and Kruglov, V. I. Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media. Phys. Rev. E, 2020, 101(4), 042220.
https://doi.org/10.1103/PhysRevE.101.042220
15. Kruglov, V. I. and Triki, H. Quartic and dipole solitons in a highly dispersive optical waveguide with self-steepening nonlinearity and varying parameters. Phys. Rev. A, 2020, 102(4), 043509.
https://doi.org/10.1103/PhysRevA.102.043509
16. Liu, C.-S. Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics. Found. Phys., 2011, 41(5), 793–804.
https://doi.org/10.1007/s10701-010-9521-4
17. Liu, C.-S. Trial equation method and its applications to nonlinear evolution equations. Acta Phys. Sin., 2005, 54(6), 2505–2509.
https://doi.org/10.7498/aps.54.2505
18. Liu, C.-S. Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients. Acta Phys. Sin., 2005, 54(10), 4506–4510.
https://doi.org/10.7498/aps.54.4506
19. Cheng-Shi, L. A new trial equation method and its applications. Commun. Theor. Phys., 2006, 45(3), 395.
https://doi.org/10.1088/0253-6102/45/3/003
20. Cheng-Shi, L. Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation. Chin. Phys., 2005, 14(9), 1710.
https://doi.org/10.1088/1009-1963/14/9/005
21. Liu, C.-S. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun., 2010, 181(2), 317–324.
https://doi.org/10.1016/j.cpc.2009.10.006
22. Cheng-Shi, L. Travelling wave solutions of triple Sine–Gordon equation. Chin. Phys. Lett., 2004, 21(12), 2369.
https://doi.org/10.1088/0256-307X/21/12/014