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Abstract. In this paper, highly dispersive optical solitons are obtained with the perturbed complex Ginzburg–Landau equation,
incorporating the Kerr law of nonlinearity, by the complete discriminant classification approach. A variety of solutions emerge from
this scheme that include solitons, periodic solutions and doubly periodic solutions. The numerical sketches support the analytical
findings.
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1. INTRODUCTION

One of the lesser-known models that is studied in the context of soliton transmission through optical fibers
across intercontinental distances is the complex Ginzburg–Landau equation (CGLE) apart from the fre-
quently studied model, namely the nonlinear Schrödinger equation. The CGLE has been studied in detail
[1–9]. The exact solutions to the perturbed CGLE with Kerr and cubic–quintic–septic law nonlinearities are
obtained using the trial equation method and a complete discriminant system [1]. The exact bright and dark
soliton solutions of the CGLE with parabolic and dual-power law nonlinearities are obtained by the usage
of the solitary wave ansatz [2]. Cubic–quartic optical solitons with the perturbed CGLE, having six forms
of self-phase modulation structures, are retrieved by the aid of the enhanced Kudryashov method [3]. The
highly dispersive bright 1-soliton solution for the perturbed CGLE with three forms of nonlinear refractive
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index structures is recovered by virtue of the semi-inverse variational principle [4]. The conservation law
for the cubic–quartic CGLE with five nonlinear forms is exhibited by the aid of the Lie symmetry [5]. A
spectrum of cubic–quartic optical solitons with the CGLE, having Hamiltonian-type perturbation terms, are
secured by the aid of powerful and prolific integration structures [6]. The first integrals and exact solutions
of the CGLE are found using traveling wave reduction [7]. Numerical solutions of the CGLE are also given
to establish approximate solutions of the model, using a linearized element-free Galerkin method [8]. The
dynamics of dissipative solitons in a fractional CGLE is addressed with the aid of variational approximation
[9].

Very recently, CGLE has gained popularity with the emerging concept of highly dispersive (HD) opti-
cal solitons [10–15], where high-order nonlinear differential equations describing the propagation of pulses
in an optical fiber are studied by using a method for finding HD solitary wave solutions [10]. HD opti-
cal solitons with a nonlinear sixth-order differential equation, having various polynomial nonlinearities, are
handled in [11]. HD optical solitons for the generalized nonlinear eighth-order Schrödinger equation with
the third, fifth, seventh and ninth power of nonlinearity are studied in [12]. HD optical solitons with the per-
turbed nonlinear Schrödinger equation, having dispersion terms of all orders and containing Kudryashov’s
sextic power-law of self-phase modulation, are secured using the trial equation method [13]. Ultrashort light
pulse propagation through an inhomogeneous monomodal optical fiber exhibiting HD effects is addressed in
[14]. Quartic and dipole solitons in an HD optical waveguide with self-steepening nonlinearity and varying
parameters are reported in [15].

The concept of HD solitons was defined a couple of years ago when chromatic dispersion (CD) was
supplemented with additional dispersion effects for its possible low count. These additional dispersive ef-
fects came from inter-modal dispersion (IMD), third-order dispersion (3OD), fourth-order dispersion (4OD),
fifth-order dispersion (5OD) and sixth-order dispersion (6OD). These dispersive terms together with the pre-
existing CD collectively produce HD solitons as modeled by the CGLE. The current paper is a study of this
model in the presence of perturbation terms. The integration methodology is the complete discriminant clas-
sification approach [16–22]. The governing model is first transformed into an ordinary differential equation
(ODE), which is subsequently integrated based on the structural classification of the corresponding discrim-
inant. This yields a variety of soliton solutions to the model in addition to other solutions that are also listed.
The details of the derivation are outlined in the rest of the paper after the model is introduced, followed by
some mathematical preliminaries.

1.1. Governing model

The complex Ginzburg–Landau equation with additional dispersion effects is presented as below:

iqt + ia1qx +a2qxx + ia3qxxx +a4qxxxx + ia5qxxxxx +a6qxxxxxx
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where a1, a2, a3, a4, a5 and a6 give IMD, CD, 3OD, 4OD, 5OD and 6OD, in sequence. a and b come
from nonlinear effects. l , q and s stem from the self-steepening effect, self-frequency shift and nonlinear
dispersion, in sequence. x depicts spatial variable, whereas q(x, t) denotes the wave profile. t implies to tem-
poral variable, while m depicts full nonlinearity. The first term also stems from temporal evolution, where
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The function F
⇣
|q|2

⌘
q for the Kerr law of nonlinear form turns out to be

F
⇣
|q|2

⌘
q = b0 |q|2 q,

where b0 is the arbitrary constant. The model with the Kerr law of nonlinear form is therefore structured as
below:

iqt + ia1qx +a2qxx + ia3qxxx +a4qxxxx + ia5qxxxxx +a6qxxxxxx

+
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where b0 stems from the Kerr law of nonlinearity and the nonlinear parameter appears with m = 3.

2. MATHEMATICAL START-UP

The starting hypothesis is given by

s = x� vt, q(x, t) = g(s)ei(�kx+wt+q0). (3)

Here, g(s) comes from the amplitude component, where s is the wave variable and v is the velocity. Also,
from the phase component, q0 is the phase constant, w is the wave number and k is the frequency.

Inserting Eq. (3) into Eq. (2) leaves us with the simplest equations

P1g2 +P2gg00+P3gg(iv) +a6gg(vi) +2(a �2b )(g0)2 +b0g4 � k(l +s)g8 = 0 (4)

and
{7l +6q +s}g6g0+

�
v�a1 +2a2k+3a3k2 �4a4k3 �5a5k4 +6a6k5�g0

�
�
a3 �4a4k�10a5k2 +20a6k3�g000 � (a5 �6a6k)g(v) = 0,

(5)

where
P1 =�a6k6 +a4k4 +a5k5 �a3k3 �a2k2 +a1k�w,

P2 = a2 +2a +3a3k�6a4k2 �10a5k3 +15a6k4

and
P3 = a4 +5a5k�15a6k2.

Eq. (5) provides us the velocity

v = a1 �2a2k�3a3k2 +4a4k3 +5a5k4 �6a6k5, (6)

by the aid of the constraints
7l +6q +s = 0,

a3 �4a4k�10a5k2 +20a6k3 = 0,
a5 = 6a6k.

(7)

Consider the trial equation

(g0)2 =
n

Â
i = 0

cigi. (8)

Substituting Eq. (8) into Eq. (4) and then balancing �k(l +s)g8 and a6gg(vi) simplifies Eq. (8) to

(g0)2 = c4g4 + c3g3 + c2g2 + c1g+ c0, (9)
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where
c4 = (

k(l +s)

720a6
)

1
3 ,

c3 = 0,

c2 =� P3

70a6
,

c1 =� 2
105a6

,
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P3

14700a2
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(10)

and c4, c2, c1 and c0 satisfy the restrictions

b0 +2(a �2b )c4 +182a6c2
2c4 +504a6c0c2

4 +2c4P2 = 0,
8c2c4 +210a6c1c2c4 +12c1c4P3 = 0,

2(a �2b )c2 +a6c3
2 +3c1c4 +45a6c2

1c4 +132a6c0c2c4 + c2P2 +12c0c4P3 +P1 = 0,

2(a �2b )c1 + c2
2 +

1
2

a6c1c2
2 +36a6c0c1c4 +

1
2

c1P2 = 0.

(11)

Setting
h = (c4)

1
4 g, s1 = (c4)

1
4 s, (12)

Eq. (9) comes out as
(hs1)

2 = h4 +d2h2 +d1h+d0, (13)
where

d2 = c2(c4)
� 1

2 , d1 = c1(c4)
� 1

4 , d0 = c0.

Rewrite Eq. (13) as

±(s1 � s0) =
Z dhp

F(h)
, (14)

where
F(h) = h4 +d2h2 +d1h+d0.

Next, we give the discriminant system [16–22]:

D1 = 1,
D2 =�d1,

D3 =�2d3
1 +8d1d3 �9d2

2 ,

D4 =�d3
1d2

2 +4d4
1d3 +36d1d2

2d3 �32d2
1d2

3 �
27
4

d4
2 +64d3

3 ,

E2 = 9d2
2 �32d1d3.

(15)

By classifying the roots of F(h), we arrive at:
(1) D4 > 0&((D2 > 0&D3  0)kD2  0), then F(h) = [(h� e1)2 + e2

2 ][(h� e3)2 + e2
4 ],

(2) D4 < 0&((D2 < 0&D3 < 0)k(D2 = 0&D3  0)kD2 > 0), then F(h) = (h� e1)(h� e2)[(h� e3)2 + e2
4 ],

(3) D4 > 0, D3 > 0, D2 > 0, then F(h) = (h� e1)(h� e2)(h� e3)(h� e4),
(4) D4 = 0, D3 < 0, then F(h) = (h� e1)2[(h� e2)2 + e2

3 ],
(5) E2 = D4 = D3 = 0, D2 > 0, then F(h) = (h� e1)3(h� e2),
(6) E2 < 0, D4 = D3 = 0, D2 < 0, then F(h) = [(h� e1)2 + e2

2 ]
2,

(7) D4 = 0, D3 > 0, D2 > 0, then F(h) = (h� e1)2(h� e2)(h� e3),
(8) E2 > 0, D4 = D3 = 0, D2 > 0, then F(h) = (h� e1)2(h� e2)2,
(9) D4 = 0, D3 = 0, D2 = 0, then F(h) = h4,
where ei(i  i  4) are constants.
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3. THE OPTICAL WAVE PATTERNS

Case 1. D4 = 0, D3 = 0, D2 = 0, then

±(s1 � s0) =
Z dh

h2 . (16)

In this case, a singular rational pattern comes out as
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⇢
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Case 2. E2 > 0, D4 = D3 = 0, D2 > 0, then

±(s1 � s0) =
Z dh
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. (18)

As a result, optical singular and dark soliton patterns read as
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Case 3. D4 = 0, D3 > 0, D2 > 0, then

±(s1 � s0) =
Z dh
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p
(h� e2)(h� e3)

. (21)

An optical bright soliton pattern is thus defined as
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while a singular periodic pattern is therefore introduced as below:
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Case 4. E2 < 0, D4 = D3 = 0, D2 < 0, then

±(s1 � s0) =
Z dh
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2
. (24)

Hence, a singular periodic pattern evolves as
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Case 5. E2 = D4 = D3 = 0, D2 > 0, then

±(s1 � s0) =
Z dhp

(h� e1)3(h� e2)
. (26)



M.-Y. Wang et al.: Highly dispersive optical solitons 11

As a result, a rational singular pattern stands as
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(
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)�
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]

)
ei(�kx+wt+q0). (27)

Case 6. D4 = 0, D3 < 0, then

±(s1 � s0) =
Z dh

(h� e1)
q
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3

. (28)

Consequently, an exponential pattern sticks out as
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Case 7. D4 > 0, D3 > 0, D2 > 0, then

±(s1 � s0) =
Z dhp

(h� e1)(h� e2)(h� e3)(h� e4)
. (30)

In this case, two double periodic patterns shape up as
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(32)
where

m2 =
(e1 � e4)(e2 � e3)

(e1 � e3)(e2 � e4)
.

Case 8. D4 < 0&((D2 < 0&D3 < 0)k(D2 = 0&D3  0)kD2 > 0), then

±(s1 � s0) =
Z dhq
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4 ]
. (33)

A double periodic pattern is thus introduced as below:
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where
e1 =

1
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Case 9. D4 > 0&((D2 > 0&D3  0)kD2  0), then

±(s1 � s0) =
Z dhq
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A double periodic pattern is therefore recovered as
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where
e1 = e1e3 + e2e4,

e2 = e1e4 � e2e3,

e3 =�e2 �
e4

e1
,

e4 = e1 � e3,
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e2

1
.

(38)

4. PHYSICAL REALIZATIONS OF SOLUTIONS

The physical realization under specific parameters is obtained, and the 3D diagrams of the solution intensity
I = |qi|2 = q jq⇤j are shown in this section.
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Example 1. Singular solutions

When v = s0 = θ0 = ω = a6 = 1, σ = 4, λ = 5, k = 10, one arrives at

q1 =

{
(
1
8
)−

1
12 (1− (

1
8
)

1
12 (x− t))−1

}
ei(−10x+t+1). (39)

Setting v = ε2 = s0 = θ0 = ω = a6 = 1, ε1 = 2, ε3 = 3, σ = 4, λ = 5, k = 10 provides us with

q5 =

{
(1

8)
− 1

12

sin[( 1
8)

1
12 (x− t)−1]

}
ei(−10x+t+1). (40)

Taking v = ε1 = s0 = θ0 = ω = a6 = 1, ε2 = 2, σ = 4, λ = 5, k = 10 paves way to

q6 =

{
(
1
8
)−

1
12 [2tan(2(

1
8
)

1
12 (x− t)−1)+1]

}
ei(−10x+t+1). (41)

If v = ε2 = s0 = θ0 = ω = a6 = 1, ε1 = 2, σ = 4, λ = 5, k = 10, one extracts

q7 =

{
(
1
8
)−

1
12 [2+

4
(( 1

8)
1
12 (x− t)−1)2 −4

]

}
ei(−10x+t+1). (42)

When v = ε3 = s0 = θ0 = ω = a6 = 1, ε2 = 2, ε1 = 3, σ = 4, λ = 5, k = 10, we acquire

q8 =

⎧
⎨

⎩(
1
8
)−

1
12

e
√

2(( 1
8 )

1
12 (x−t)−1) +

√
2

2 +2
√

2+1

(e
√

2(( 1
8 )

1
12 (x−t)−1) +

√
2

2 )2 −1

⎫
⎬

⎭ei(−10x+t+1). (43)

Figures 1 and 2 display the 3D diagrams of |q5|2 and |q8|2.

Fig. 1. |q5|2 Fig. 2. |q8|2Fig. 2. |q8|2

   t

 x
 x

 t

   |q5|2
–10
300

  |q8|2
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Example 2. Optical solitons

Setting v = ε2 = s0 = θ0 = ω = a6 = 1, ε1 = 2, σ = 4, λ = 5, k = 10 recovers the singular and dark solitons

q2 =

{
(
1
8
)−

1
12 [

1
2

coth
−(1

8)
1
12 (x− t)+1

2
+

5
2
]

}
ei(−10x+t+1) (44)

and

q3 =

{
(
1
8
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1
12 [

1
2

tanh
−(1

8)
1
12 (x− t)+1

2
+

5
2
]

}
ei(−10x+t+1). (45)

Taking v = ε2 = s0 = θ0 = ω = a6 = 1, ε2 = 2, ε1 = 3, σ = 4, λ = 5, k = 10 presents the bright soliton

q4 =

{
4(1

8)
− 1

12

cosh[
√

2(( 1
8)

1
12 (x− t)−1)]−3

}
ei(−10x+t+1). (46)

Figures 3 and 4 exhibit the 3D diagrams of |q3|2 and |q4|2.

Example 3. Elliptic function double periodic solutions

If v = ε4 = s0 = θ0 = ω = a6 = 1, ε3 = 2, ε2 = 3, ε1 = σ = 4, λ = 5, k = 10, one secures

q9 =

{
(
1
8
)−

1
12

9sn2(( 1
8)

1
12 (x− t)−1,

√
3

2 )−8

3sn2(( 1
8)

1
12 (x− t)−1,

√
3

2 )−2

}
ei(−10x+t+1), (47)

q10 =

{
(
1
8
)−

1
12

sn2(( 1
8)

1
12 (x− t)−1,

√
3

2 )−4

sn2(( 1
8)

1
12 (x− t)−1,

√
3

2 )−2

}
ei(−10x+t+1). (48)

When v = ε4 = s0 = θ0 = ω = a6 = 1, ε3 = 2, ε2 = 3, ε1 = σ = 4, λ = 5, k = 10, we retrieve

q11 =

⎧
⎨

⎩(
1
8
)−

1
12
(18−3

√
10)cn2(10

1
4 (( 1

8)
1
12 (x− t)−1),

√
10−3

√
10

20 )−6−3
√

10

(5−
√

10)cn2(10
1
4 (( 1

8)
1
12 (x− t)−1),

√
10−3

√
10

20 )−1−
√

10

⎫
⎬

⎭ei(−10x+t+1). (49)

Fig. 3. |q3|2

Fig. 4. |q4|2

Fig. 4. |q4|2
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Fig. 5. |q9|2
Fig. 6. |q10|2

Setting v = ε4 = ε3 = s0 = θ0 = ω = a6 = 1, ε2 = ε1 = 2, σ = 4, λ = 5, k = 10 derives

q12 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1
8
)−

1
12

⎛

⎝ (9+
√

5)sn2(Y ((1
8)

1
12 (x− t)−1),

√
6
√

5−10
2 )

+(−5−
√

5)cn2(Y (( 1
8)

1
12 (x− t)−1),

√
6
√

5−10
2 )

⎞

⎠

⎛

⎝
7+

√
5

2 sn2(Y (( 1
8)

1
12 (x− t)−1),

√
6
√

5−10
2 )

+cn2(Y (( 1
8)

1
12 (x− t)−1),

√
6
√

5−10
2 )

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

×ei(−10x+t+1), (50)

where

Y =
2
√

6016+109
√

5
29+7

√
5

.

Figures 5 and 6 visualize the 3D diagrams of |q9|2 and |q10|2.

5. CONCLUSIONS

The current paper derives and enlists HD soliton solutions to the CGLE that is studied in the context of
soliton transmission through optical fibers across intercontinental distances. The model is considered with
the Kerr law of nonlinearity and a few Hamiltonian-type perturbation terms. HD solitons are derived by
the complete discriminant classification approach. Such solitons are employed when CD is supplemented
with additional dispersion effects due to the low count of CD. In addition to soliton solutions, a different
variety of solutions naturally emerged based on the structure and sign of the discriminant. This led to a wide
spectrum of solutions that include solitons, periodic solutions and doubly periodic solutions. The numerical
sketches support the analytical findings.

The derived soliton solutions are going to lay a strong footing for further studies with the model. An
immediate study would involve computing the conservation laws that would lead to the study of quasi-
stationary soliton solutions in the presence of weak perturbations, which would be both of Hamiltonian
as well as non-Hamiltonian type. Also, additional form(s) of self-phase modulation sources have not been
examined yet. This is, thus, an open problem and will be later investigated. The results are yet to be released
and are currently awaited. This would subsequently lead to a very interesting structure of the results that
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would give a plethora of physical insight into the governing model. Moreover, the model will be later further
extended with the effects of birefringent fibers and DWDM systems that would give a truly broader and novel
perspective on HD solitons [1].
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with complex Ginzburg–Landau equation. J. Appl. Sci. Eng., 2021, 24(6), 937–1004.

7. Kudryashov, N. A. First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput., 2020,
386, 125407.

8. Li, X. and Li, S. A linearized element-free Galerkin method for the complex Ginzburg–Landau equation. Comput. Math. with
Appl., 2021, 90, 135–147.

9. Qiu, Y., Malomed, B. A., Mihalache, D., Zhu, X., Zhang, L. and He, Y. Soliton dynamics in a fractional complex Ginzburg–
Landau model. Chaos Solitons Fractals, 2020, 131, 109471.

10. Kudryashov, N. A. Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik, 2020, 206,
163550.

11. Kudryashov, N. A. Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos Solitons
Fractals, 2020, 140, 110202.

12. Kudryashov, N. A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik,
2020, 206, 164335.

13. Wang, M.-Y. Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power
law nonlinear. Optik, 2022, 267, 169631.

14. Triki, H. and Kruglov, V. I. Propagation of dipole solitons in inhomogeneous highly dispersive optical-fiber media. Phys. Rev. E,
2020, 101(4), 042220.

15. Kruglov, V. I. and Triki, H. Quartic and dipole solitons in a highly dispersive optical waveguide with self-steepening nonlinearity
and varying parameters. Phys. Rev. A, 2020, 102(4), 043509.

16. Liu, C.-S. Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics.
Found. Phys., 2011, 41(5), 793–804.

17. Liu, C.-S. Trial equation method and its applications to nonlinear evolution equations. Acta Phys. Sin., 2005, 54(6), 2505–2509.
18. Liu, C.-S. Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients.

Acta Phys. Sin., 2005, 54(10), 4506–4510.
19. Cheng-Shi, L. A new trial equation method and its applications. Commun. Theor. Phys., 2006, 45(3), 395.
20. Cheng-Shi, L. Exact travelling wave solutions for (1+1)-dimensional dispersive long wave equation. Chin. Phys., 2005, 14(9),

1710.
21. Liu, C.-S. Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to

nonlinear differential equations. Comput. Phys. Commun., 2010, 181(2), 317–324.
22. Cheng-Shi, L. Travelling wave solutions of triple Sine–Gordon equation. Chin. Phys. Lett., 2004, 21(12), 2369.


	Introduction
	Governing model

	Mathematical Start-Up
	The optical wave patterns
	Physical realizations of solutions
	Conclusions

