ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Impact of laser fading on physico-mechanical properties and fibre morphology of multicomponent denim fabrics; pp. 145–153
PDF | https://doi.org/10.3176/proc.2023.2.05

Authors
Nele Mandre, Tiia Plamus, Angelika Linder, Andres Krumme, Anti Rohumaa
Abstract

Laser fading technology is used to give a unique worn look to a fabric. This finishing technique is environmentally friendly compared to conventional methods because it reduces the use of harmful chemicals and large amounts of water. A carbon dioxide (CO2) laser with a wavelength of 10.6 µm was used in this study. In bulk production, fixed manufacturing parameters help to reduce production preparation time. Thus, two combinations of laser power and speed of the laser cutter head (14 W and 230 mm/s; 16 W and 350 mm/s) were used to determine how universal the fixed laser parameters are for fading five different types of multicomponent twill and satin weave denim fabrics, which contain cotton, elastane, polyester and viscose. Physico-mechanical properties (tear, tensile properties and abrasion resistance) were tested to evaluate the effect of the selected laser parameters on fabric strength properties. Microscopical analysis was performed to assess the effect of laser fading on the yarn and fibre morphology of denim fabrics.

References

1. Paul, R. (ed.). Denim. Manufacture, Finishing and Appli­cations. Woodhead Publishing, Cambridge, 2015.

2. Gandhi, K. L. (ed.). Woven Textiles ‒ Principles, Tech­nologies and Applications. 2nd ed. Woodhead Publishing, Cambridge, 2020.

3. Ahmad, S., Ashraf, M., Abid, S., Jabbar, M., Shafiq, F. and Siddique, A. Recent developments in laser fading of denim: a critical review. J. Nat. Fibers, 2022, 19(15), 11621‒11631.
https://doi.org/10.1080/15440478.2022.2029793

4. Ramratan, Kumar, R. and Singh, S. Study of denim jeans fabric on finishing process and characteristic performances. Asian Text. J., 2020, 29(11), 26‒30. 

5. Juciene, M., Urbelis, V. V., Juchneviciene, Ž., Saceviciene, V. and Dobilaite, V. The influence of laser treatment and industrial washing on denim fabric tension properties. Int. J. Cloth. Sci. Technol., 2018, 30(4), 588–596. 
https://doi.org/10.1108/IJCST-03-2017-0032

6. Vilumsone-Nemes, I. (ed.). Industrial Cutting of Textile Materials. 2nd ed. Woodhead Publishing, Cambridge, 2018.
https://doi.org/10.1016/B978-0-08-102122-4.00007-X

7. Nayak, R. and Padhye, R. The use of laser in garment manufacturing: an overview. Fash. Text., 2016, 3(5), 1‒16. 
https://doi.org/10.1186/s40691-016-0057-x

8. Tarhan, M. and Sariişik M. A comparison among performance characteristics of various denim fading pro­cesses. Text. Res. J., 2009, 79(4), 301‒309. 
https://doi.org/10.1177/0040517508090889

9. Sakib, A., Islam, T., Islam, S., Ahmed, M. and Ali, S. Analysis the physical properties of laser fading on denim fabric. J. Text. Eng. Fash. Technol., 2019, 5(6), 288‒290. 
https://doi.org/10.15406/jteft.2019.05.00215

10. Kan, C. W. Colour fading effect of indigo-dyed cotton denim fabric by CO2 laser. Fibers Polym., 2014, 15(2), 426‒429. 
https://doi.org/10.1007/s12221-014-0426-2

11. Juciene, M., Urbelis, V. V., Juchneviciene, Z., Saceviciene V. and Dobilaite, V. The influence of laser treatment and industrial washing on denim fabric tension properties. Int. J. Cloth. Sci. Technol., 2018, 30(4), 588‒596. 
https://doi.org/10.1108/IJCST-03-2017-0032

12. Štěpánková, M., Wiener, J. and Rusinová K. Decolourization of vat dyes on cotton fabric with infrared laser light. Cellulose, 2011, 18(2), 469–478. 
https://doi.org/10.1007/s10570-011-9494-2

13. Hung, O., Chan, C., Kann, C. and Yuen, C. M. Microscopic study of the surface morphology of CO2 laser-treated cotton and cotton/polyester blended fabric. Text. Res. J., 2017, 87(9), 1107–1120. 
https://doi.org/10.1177/0040517516648511

14. EN ISO 139:2005/A1:2011. Textiles – standard atmospheres for conditioning and testing – Amendment 1. 

15. EN ISO 1049-2:2000. Textiles ‒ woven fabrics ‒ construction ‒ methods of analysis ‒ Part 2: Determination of number of threads per unit length.

16. EN ISO 12947-2:2016. Textiles – determination of the abrasion resistance of fabrics by the Martindale method – Part 2: Determination of specimen breakdown. 

17. EN ISO 13937-2:2000. Textiles – tear properties of fabrics – Part 2: Determination of tear force of trouser-shaped specimens (Single tear method). 

18. EN ISO 13934-1:2013. Textiles – tensile properties of fabrics – Part 1: Determination of maximum force and elongation at maximum force using the strip method. 

19. Ko, F. K. and Wan Y. Introduction to Nanofiber Materials. Cambridge University Press, Vancouver, 2014. 
https://doi.org/10.1017/CBO9781139021333 (accessed 2022-06-30).

20. Kan, C. W., Yuen, C. W. M. and Cheng, C. W. Technical study of the effect of CO2 laser surface engraving on the colour properties of denim fabric. Color. Technol., 2010, 126(6), 365–371. 
https://doi.org/10.1111/j.1478-4408.2010.00270.x

21. Montazer, M., Chizarifard, G. and Harifia, T. CO2 laser irradiation of raw and bleached cotton fabrics, with focus on water and dye absorbency. Color. Technol., 2013, 130(1), 13‒20. 
https://doi.org/10.1111/cote.12057

22. Arora, A. Effect of abrasion resistance on the woven fabric and its weaves. IJSBAR, 2020, 50(2), 9‒19.

23. Gon,g R. H. (ed.). Specialist Yarn and Fabric Structures: Developments and Applications. Woodhead Publishing, Cambridge, 2011. 

24. Public Waste Agency of Flanders (OVAM). Ecodesign crit­eria for consumer textiles. 2021. https://ecodesign-centres. org/from-partners

25. Eryuruk, S. H. and Kalaoğlu, F. The effect of weave construction on tear strength of woven fabrics. Autex Res. J., 2015, 15(3), 207‒214. 
https://doi.org/10.1515/aut-2015-0004

26. Triki, E., Dolez, P. and Vu-Khanh, T. Tear resistance of woven textiles – criterion and mechanisms. Compos. B. Eng., 2011, 42(7), 1851‒1859. 
https://doi.org/10.1016/j.compositesb.2011.06.015

27. Dhamija, S. and Chopra, M. Tearing strength of cotton fabrics in relation to certain process and loom parameters. Indian J. Fibre Text. Res., 2007, 32(4), 439‒445.

28. Malik, Z. A., Malik, M. H., Hussain T. and Tanwari, A. Predicting strength transfer efficiency of warp and weft yarns in woven fabrics using adaptive neuro-fuzzy inference system. IJFTR, 2010, 35, 310‒316. 

29. Afroz, F. and Siddika, A. Effect of warp yarn tension on crimp % in woven fabric. Eur. Sci. J., 2014, 10(24), 202‒207. 
https://doi.org/10.19044/esj.2014.v10n24p%25p

30. Nasrun, F. M. Z., Yahya, M. F., Ghani, S. A. and Ahmad, M. R. Effect of weft density and yarn crimps towards tensile strength of 3D angle interlock woven fabric. AIP Conf. Proc.1774, 020003. 
https://doi.org/10.1063/1.4965051

31. Asaduzzaman, Md., Hasan, A. K. M. M., Patwary, Md. M., Mahmud, S., Islam, A. I., Raju, T. H. et al. Effect of weave type variation on tensile and tearing strength of woven fabric. Technium, 2020, 2(6), 35‒40. 
https://doi.org/10.47577/technium.v2i6.1409

32. Özgüney, A. T., Özçelik, G. and Özkaya, K. A study on specifying the effect of laser fading process on the colour and mechanical properties of the denim fabrics. Tekst. ve Konfeksiyon, 2009, 19(2), 133‒138. 

Back to Issue